IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

1105

Colorful Star Motif Counting: Concepts,
Algorithms and Applications

Hongchao Qin"?, Gao Sen, Rong-Hua Li

Abstract—A colorful star motif is a star-shaped graph where any
two nodes have different colors. Counting the colorful star motif
can help to analyze the structural properties of real-life colorful
graphs, model higher-order clustering, and accelerate the mining of
the densest subgraph exhibiting h-clique characteristics in graphs.
In this manuscript, we introduce the concept of colorful h-star in
a colored graph and proposes two higher-order cohesive subgraph
models, namely colorful h-star core and colorful h-star truss. We
show that the colorful h-stars can be counted and updated very effi-
ciently using a novel dynamic programming (DP) algorithm. Based
on the proposed DP algorithm, we develop a colorful h-star core
decomposition algorithm which takes O (hm) time, O (hn 4+ m)
space; and a colorful h-star truss decomposition algorithm which
takes O(hm?'-®) time, O(hm) space, where m and n denote
the number of edges and nodes of the graph respectively. More-
over, we also propose a graph reduction technique based on our
colorful h-star core model to accelerate the computation of the
approximation algorithm for h-clique densest subgraph mining.
The results of comprehensive experiments on 11 large real-world
datasets demonstrate the efficiency, scalability and effectiveness of
the proposed algorithms.

Index Terms—Colorful star, K-core, K-truss, H-clique densest
subgraph.

1. INTRODUCTION

OTIFS, also known as graphlets, patterns, or subgraphs,

play a crucial role as the foundational elements in net-
works [1]. The analysis of motifs has proven ingaining insights
into network evolution [2], [3], [4], developing advanced graph
classification algorithms [5], [6], and fostering cutting-edge
clustering techniques [7], [8].valuable in At the core of motif
mining and analysis lies the essential task of motif counting,
which entails efficiently computing the occurrences of a specific
motif (e.g., a triangle, a clique, etc.) within a graph. More-
over, the exploration of motif counting boasts a rich historical

Received 4 April 2024; revised 21 September 2024; accepted 26 Novem-
ber 2024. Date of publication 13 December 2024; date of current version 5
February 2025. This work was supported in part by the National Key R&D
Program of China under Grant 2021 YFB3301303, and in part by NSFC under
Grant 62202053, Grant U2241211, and Grant 62072034. Recommended for
acceptance by R. Akbarinia. (Corresponding authors: Rong-Hua Li; Guoren
Wang.)

Hongchao Qin, Rong-Hua Li, Ye Yuan, and Guoren Wang are with the
Department of Computer Science, Beijing Institute of Technology, Bei-
jing 100811, China (e-mail: ghc.neu@gmail.com; lironghuascut@gmail.com;
yuan-ye @bit.edu.cn; wanggrbit@ 126.com).

Gao Sen is with the Computer Science, School of Computing, National
University of Singapore, Singapore 119077.

Hongzhi Chen is with ByteDance Infrastructure Team, Beijing 100098, China.

Digital Object Identifier 10.1109/TKDE.2024.3514997

, Hongzhi Chen, Ye Yuan

, and Guoren Wang

A X
KR

(b) The colorful stars

(a) The colored graph

Fig. 1. Illustration of the colored graph and colorful stars.

background, starting from the origins of triangle counting to its
current significant interest in recent years.

Lately, there has been growing interest within the computer
theory community regarding motif on colored graphs [9], [10],
[11]. A graph is categorized as colored when each of its nodes
is assigned a distinct color, and the nodes at the endpoints
of every edge have different colors, as depicted in Fig. 1(a).
While these studies provide complex algorithms and insightful
theoretical findings for motif counting in colored graphs, they
often overlook the practical applications of such algorithms. Our
manuscript aims to bridge this gap by specifically focusing on the
problem of colorful star motif counting, where the star motifs
themselves are colored graphs, as illustrated in Fig. 1(b). In
summary, the applications can be categorized into three main
directions: (i) Direct Analysis, which involves directly exam-
ining the network’s structure or behavior through colorful star
motifs, allowing us to identify key characteristics or emerging
patterns. (ii) Clustering Modeling, where we leverage colorful
star motifs, as higher-order structures, to build clustering models
that preserve the connectivity of these motifs, enabling us to cap-
ture more meaningful network structures compared to traditional
clustering approaches. (iii) Approximation as Cliques, where
we approximate higher-order motifs as cliques, simplifying the
analysis of dense subgraphs while retaining essential properties,
providing a more efficient alternative to the computationally
expensive clique enumeration process. The detailed explanation
is as follows:

Application I: analyzing the structure of real-life colored
graphs. It is a most straightforward application which based on
the definition itself. Colored graphs with distinct colors assigned
to adjacent vertices have numerous real-world applications:

e Exam Scheduling Graph: In educational institutions, ex-

ams are often scheduled on different days and time slots.
To prevent conflicts among students who are enrolled in
multiple exams, a colorful graph is employed. Each vertex

1041-4347 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0181-8379
mailto:qhc.neu@gmail.com
mailto:lironghuascut@gmail.com
mailto:yuan-ye@bit.edu.cn
mailto:wanggrbit@126.com

1106

represents an exam, while edges signify common students
between exams. The objective is to assign colors to nodes
(exams) in a way that ensures no two adjacent vertices have
the same color.

o Wireless Communication Network: Wireless communica-
tion networks rely on effectively scheduling nodes or
routers to transmit data without interference. To achieve
this, a colorful graph is utilized. Vertices represent nodes,
and edges denote communication links between nodes. The
goal is to assign a distinct color to each node, ensuring that
no two adjacent nodes with common communication links
share the same color.

® Colorful Roadmap: In cartography, map coloring is essen-
tial for creating easily readable and distinguishable maps.
The process involves assigning different colors to regions
on a map, ensuring that no adjacent regions have the same
color. To accomplish this, a colorful graph is employed,
with vertices representing map regions and edges indicat-
ing shared borders between regions.

A colorful star motif refers to a star-shaped graph in which
each pair of nodes has distinct colors. Counting these colorful
star motifs in a colored graph allows us to analyze the behavior
and structure of this specific motif. For example, in a social
network where nodes represent individuals and edges symbolize
social connections, a colorful star motif represents an influential
individual (the central node) connected to diverse groups of
people (the leaf nodes).

By quantifying the occurrence of colorful star motifs, valuable
insights into the structure and dynamics of the graph can be
uncovered. A significant number of colorful star motifs might re-
veal important hubs or connectors, indicating that certain nodes
play pivotal roles in the network. Conversely, a low count of
these motifs may suggest a more homogeneous or decentralized
network structure. Thus, counting colorful star motifs provides
a deeper understanding of the network’s key behaviors and
interactions.

Application II: modeling the higher-order clustering in a
traditional graph. Since the colorful star motif is inherently a
higher-order structure, it can be utilized for clustering modeling.
The advantage of using the colorful star motif over other motifs
lies in its ability to identify key hubs within the network, such
as popular superstars in social networks or central relays in
communication networks. This is due to the colorful star motif’s
definition, where the central node has a high degree, and the
nodes connected to it are differently colored, indicating a higher
likelihood of direct connections within the network (since in a
colored graph, two connected nodes must have different colors).
However, to mine the higher-order cluster, one possible method
is first listing or counting the higher-order motifs of each nodes,
and then aggregating the nodes into clusters.

For example, we propose a novel higher-order k-core model
based on a concept of colorful h-star. Specifically, we first color
the graph using a linear-time greedy coloring algorithm [12],
[13] such that any two adjacent nodes in the graph have different
colors. An h-star is a tree with a central node connected to
the other h-1 nodes. A colorful h-star, denoted by « is a star
in which all nodes have different colors (Fig. 1(b)). Clearly, a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

colorful h-star is a relaxed definition of h-clique, as an h-clique
must form a colorful A-star. The colorful h-star k-core is a
maximal subgraph of G in which each node acts as the center of
at least k colorful h-stars. It is easy to derive that the traditional
k-core is a special case of our colorful h-star k-core when h = 2.
Similar to the colorful h-star k-core, we also introduce another
higher-order model, the colorful h-star k-truss, and present the
method for its decomposition.

Application III: speeding up h-clique densest subgraph min-
ing: Since two connected nodes must have different colors
in a colored graph, the colorful star motif can be seen as an
approximation of a clique There is a considerable amount of
work using cliques for dense subgraph modeling, such as the
h-clique core and the h-clique densest subgraph. However, the
main challenge with these approaches is that clique enumeration
is extremely time-consuming. The colorful star motif counting
can also speed up a series of well-known algorithms, such
as the algorithms for mining the h-clique core and h-clique
densest subgraph [14], [15], [16], [17]. For example, the goal
of the h-clique densest subgraph problem is to maximize the
average number of h-cliques over the number of nodes among
all possible subgraphs. However, the computation on mining
the h-clique densest subgraph is often very costly on large
graphs for a relatively large A (e.g., h > 6), since the number
of the motif h-clique is exponential level rising with respect
to h.

Unlike counting the h-cliques, we show that the number of
colorful h-stars for each central node can be computed and
updated in at most O(hy) time by a novel dynamic program-
ming (DP) algorithm, where x is the number of colors used
to color the graph. Based on our DP technique, we develop an
O(h x m)-time algorithm to compute the colorful h-star core
decomposition of the graph using O(hn + m) space, thus our
model can be scalable to handle large graphs even for a relatively
large k. In addition, based on the colorful A-star core model, we
also develop a new graph reduction technique for the h-clique
densest subgraph problem which can significantly speed up the
state-of-the-art approximate h-clique densest subgraph mining
algorithm [14].

Around the applications above, the main contributions of this
manuscript are as follows.

Concepts: We first intrduce the concept of colorful h-star in a
colorful graph, which s a star-shaped graph where any two nodes
have different colors. Next, to model the higher-order clustering,
we propose two novel higher-order cohesive subgraph models,
i.e., colorful h-star core and colorful A-star truss.

Algorithms: To count the colorful star motif, we propose
a novel DP-based updating technique which can dynamically
update the number of colorful A-stars for a node when one of
its neighbor node is deleted, without recomputing the colorful
h-star counts from scratch. With this DP-based updating tech-
nique, we propose an efficient peeling algorithm to compute
the colorful h-star core decomposition which consumes O (hm)
time and O(hn + m) space. Furthermore, we introduce a de-
composition algorithm for the colorful h-star truss, characterized
by a time complexity of O(hm!®) and a space complexity
of O(hm). Since h is often very small (less than 10), our

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

work provides a near-linear time solution for higher-order graph
analysis applications.

Applications: Once we have enumerated the number of col-
orful h-stars in the graph, we can gain valuable insights into
the underlying structure of the colored graph (Application I).
Building upon the innovative techniques for counting and up-
dating colorful h-stars, we have devised a highly efficient peeling
algorithm for decomposing the colorful h-stars into their respec-
tive cores or trusses (Application II). As the h-clique core can
achieve a good approximation to the model of h-clique densest
subgraph [14]. We establish that the colorful h-star core model
can be regarded as a relaxation of the h-clique core model.
To expedite the approximate mining of the densest subgraph
exhibiting h-clique characteristics, we introduce a novel tech-
nique based on colorful h-star cores. This approach effectively
reduces the graph size without compromising the approximation
performance of the h-clique core based algorithm (Application
III).

Experiments: We conduct extensive experiments on 11 large
real-life datasets to evaluate our algorithms. The results show
that: (1) the proposed colorful % -star core/truss decomposi-
tion algorithm is very efficient to handle large graphs which
takes only a few seconds on the large graphs with more than
IM nodes and 10M edges even when k=6. (2) the proposed
graph reduction technique can achieve one order of magnitude
speedup over the state-of-the-art approximate h -clique dens-
est subgraph mining algorithm. For example, on the largest
datasets LiveJournal (more than 4M nodes and 40M edges),
the state-of-the-art algorithms takes 113 seconds on the original
graph. However, when integrating with our graph reduction
technique, such an algorithm only takes 11 seconds. (3) Our
colorful h-star k-core with maximum k also provides a very
good approximation of the h-clique densest subgraph. On most
datasets, it can achieve the same and even better approximation
ratio than the state-of-the-art method [14]. (4) Graph coloring
algorithms affect the performance of our algorithms and qual-
ities of approximation, but nodes’ distributions are generally
similar according to different graph colorings. In addition, we
also conduct a case study on DBLP, and the results show that
our model can indeed identify some interesting and meaningful
communities with different semantics compared to the previous
models.

II. CONCEPTS OF COLORFUL STAR
A. Colored Graph

The minimum graph coloring problem is a fundamental topic
in graph theory. The goal of this problem is to assign colors to
the vertices of a graph such that no two adjacent vertices share
the same color, while minimizing the number of colors used.
More formally, a colored graph can be defined as follows:

Definition 1 (Colored graph): A colored graph is a node-
labeled graph G = (V,E,C) where V(FE) are the set of
nodes(edges), C : V' — C denotes the colored function where
C' is the set of all the colors, which satisfies that for each edge,
the color of the two end nodes are different, i.e., C(u) # C(u)
for each (u,v) € E.

1107

However, the minimum graph coloring problem is NP-
hard [18], which makes it challenging to obtain a colored
graph with the smallest possible number of colors |C]. In
this manuscript, we utilize a linear-time greedy coloring algo-
rithm [12], [13] to obtain a valid coloring for the graph. Fortu-
nately, the experimental results in Section V-D demonstrate that
the various greedy graph coloring methods have little impact on
the effectiveness of the colorful star motif counting algorithms.
Therefore, in the remaining of this manuscript, we will skip the
process of obtaining a colored graph and instead assume that a
colored graph is readily given.

Below are some basic notations: let V7, Eo denote the nodes
andedgesin G;andn = |Vg|, m = | E¢| be the number of nodes
and edges in G. Let N& denotes the set of neighbor nodes of
in G, and d¢ = |NS| denotes the degree of u in G. A subgraph
S = (Vs, Eg) is aninduced subgraph of Gif Vg C V and Eg =
{(u,v)|(u,v) € E,u € Vg,v € Vg}.

B. Colorful Star

An h-star motif is a tree, with one central node having degree
h — 1 and the other i — 1 nodes having degree 1. However, in a
colored graph, a colorful h-star motif is a h-star motif in which
any pair of nodes has different colors. Based on a valid colored
graph, we define the concept of colorful A-star motif as follows.

Definition 2 (Colorful h-star motif): Given a colored graph
G = (V,E,C) and an integer h > 2, a colorful h-star motif
(denotes by %) is a subgraph in which (i) one central node
has degree i — 1 and the other i — 1 nodes have degree 1; (ii)
any pair of nodes has different colors, i.e., C(u) # C(v) for each
u,v € %"

Below, we show that counting the colorful hA-star motif is
practically computing the central degree of the colorful h-star.

Definition 3 (Central degree of a motif (motif degree)): Given
a colored graph G = (V| E,C) and an integer h, the central
degree of a motif M for a node u in G, denoted by d$ (M),
is the number of the motif which centered on w.

For example, the central degree of h-star (h-star degree) for a
node u in GG is the number of h-stars centered on u; the central
degree of colorful h-star (colorful h-star degree) for a node u in
G, denoted by d (x"), is the number of colorful h-stars centered
on u; and the central degree of h-clique (h-clique degree) for
anode u in G, denoted by d¥ ("), is the number of h-cliques
that u participates in.

Clearly, in a traditional graph G, the central degree of h-star
is (251) But those h-stars are not all colorful in a colored graph.
As shown in Fig. 1(a), consider V3 to the be the central node and
h = 3, we can easliy get that the number of h-stars which are
centered on V3 is (g) = 6. However, the color of V5 and V5 are
same, so the subgraph of {V3, V5, V5} is not a colorful h-star.
Therefore, the alglorithm for counting the h-star is different from
that for the colorful A-star.

Note that, by Definition 2, any pair of nodes in a colorful h-star
must have different colors, as shown in Fig. 1(b). The h-clique
model also shares this property, and thus it must be a colorful
h-star. Indeed, unlike the h-clique, the colorful h-star may miss
some edges between two nodes, even when they have different

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1108

TABLE I
MAIN SYMBOLS

Symbols Definitions
G = (V,E,C) the colored graph
C(u) the color of node v in G

N, f s df the neighborhood, degree of node u in G
*" the colorful h-star (Definition 2)
X" the h-clique

df (M) the central degree of a motif M for v in G (Definition 3)

df (*h), df (lZlh) the central degree (motif degree) of ", " for u in G

Ck the k-core (Section 4.1.1)
Cu the core number of a node u (Section 4.1.1)

CSCy (*"’) (abbr. CSCZ) the colorful h-star k-core (Definition 4)
cscy, (*h) (abbr. cscﬁ) the colorful hA-star core number of a node u
Tg the k-truss (Section 4.1.2)
the k-truss number of an edge e (Section 4.1.2)
the colorful h-star k-truss (Definition 6)
the colorful A-star truss number of an edge e
the h-clique k-core (Definition 8)
the h-clique core number of a node u

te
CSTy(x") (abbr. CSTH)
cste(*h) (abbr. cst?)
CCy(K") (abbr. CCT)
ccu(gh) (abbr. ccﬁ)

jVs /VS Vs Vs Vs Vs Vs Vs Vs
Vi Vs \Y Vi V3 V4 V7

f V7 Vs

V; ®V3 ®V3 OV4 OV, OV; GV, 0V @V ®Vs

o Lo Lo GBI ERER
'V V:

Vi OVy @V3 OV; OV4®Vs CGV; Vs s 5 s

Lov, dovs &

Vi OVs @V3 8V OV Vs

Vs

v,

Vi ViV Vi Vs Ve
Vs

V, Vi Ve
(a) Colorful 3-star degree (b) Triangle (3-clique) degree

Fig. 2. Illustration of the central degree of vs.

colors. Thus, we consider a subgraph induced by the nodes of
a colorful h-star as a relaxed h-clique subgraph. Such a nice
feature motivates us to use colorful h-stars to replace h-cliques
as a building block to perform higher-order graph analysis.

Table I lists the main symbols used in this manuscript and
their definitions; Example 1 illustrates the definition of central
degree.

Example 1: Reconsider the graph G in Fig. 1(a). Suppose
h = 3. For node vs, we can easily derive that its central degree

of 3-star is (d%) = 15. Also, vs participates in eight 3-cliques

h-1
listed in Fig. 2(b), thus its h-clique degree dfs (X")is equal to 8.
However, the central degree of the colorful h-star of v5, denoted
by dS ("), is 13, because there exist 13 colorful 3-stars which
are centered on v5 as enumerated in Fig. 2(a).

For higher-order graph analysis, it often needs to compute
the central degree of a node. For example, the h-clique based
higher-order graph analysis applications [15], [16], [17] require
to calculate the h-clique degree of a node. When using our
colorful h-star as a relaxation of h-clique for higher-order graph
analysis, we also need to compute the colorful h-star degree of
a node. However, computing such a quantity for each node is a
nontrivial task. Moreover, some applications may also need to
dynamically update the colorful h-star degree when the graph is
updated by deleting an edge.

Based by Definitions 2 and 3, we show the problem formula-
tion as follows.

Problem 1 (Colorful Star Motif Counting): Given a colored
graph G = (V, E,C) and parameter h > 2, the goal of colorful

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

star motif counting is to calculate the central degree of the
colorful h-star, i.e., d (x"), for each node u € V.

Note that, we define the problem of counting the colorful star
motif centered on a given node w in a graph. However, if we
extend this definition to counting colorful star motifs across the
entire graph, the above definition remains valid. To count all
the colorful star motifs in a colored graph G = (V, E,C), we
simply need to sum the colorful h-star degrees of all nodes,
ie, Y ,cv d9(¥"), to obtain the result. This is because, in
Definition 3, we specified that the motif is centered on node
u. Therefore, the colorful A-star motif centered on node u will
not be identical to the colorful A-star motif centered on node v
(where v # u). To address this issue, our approach focuses on
efficiently computing the colorful A-star degree for each node
in the graph. Additionally, we propose a fast update algorithm
that updates the colorful h-star degree when the neighbors of the
central node u are removed.

Challenge: Clearly, the h-star degree can be derived by a
combinatorial formula. However, there does not exist a com-
binatorial formula that can be used to compute the colorful
h-star degree for a node u. A straightforward approach is to
enumerate all h-stars of u and then count all the valid colorful i
stars. Such a straightforward approach is clearly intractable for
high-degree nodes due to combinatorial explosions. Therefore, a
challenging problem is how can we develop practical solutions to
compute the colorful h-star degree of a node without brute-force
enumeration. Furthermore, when the graph is updated, how can
we derive a fast solution to update the colorful h-star degree
of a node without recomputing the colorful h-star degree from
scratch. Below, we will develop efficient algorithms based on a
technique of dynamic programming to tackle these challenges.

III. ALGORITHMS FOR COLORFUL STAR COUNTING

As counting the colorful star in the whole graph can be easily
extended by calculating the central degree of the colorful h-
star for each node v € V. In this section, we first propose a
dynamic programming (DP) algorithm to compute the colorful
h-star degree of a given node u. Then, we develop an efficient
updating algorithm to update the colorful h-star degree of the
node u when one of its neighbors is removed.

A. The DP-Based Counting Algorithm

Algorithm 1 shows the pseudocode of our DP algorithm to
calculate the colorful h-star degree of u. First, Algorithm 1
invokes the greedy coloring procedure [12], [13] following any
ordering on nodes (break ties by node ID) to obtain a valid
coloring for all nodes (line 1). After that, the algorithm computes
df (x") using a DP approach (lines 2-6). Below, we present a
detailed description of the DP procedure.

First, for any node u, the neighbors of u can be divided
into x groups in terms of their colors, here x is the number
of colors used by the greedy coloring algorithm. Let Group(7)
be the set of u’s neighbor nodes whose color values are equal
to i, i.e., Group(i) = {v|v € N ,C(v) = i}. The size of each
color group is denoted by cnt(i) = |Group()|. Let DP(4, j) be

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

Algorithm 1: The DP-Based Counting Algorithm.

Input: A graph G, a node u and a parameter i
Output: The colorful h-star degree d$ (x)
C(u) for u € G < GreedyColoring(G);
X ¢ the number of colors in C(v) ;
for i =1 to x do
Group(i) + {vjv € N&,C(v) = i};
ent (i) + |Group(7)|;

(73 VI S

dS (") « Counting(x, h, cnt);
7 return d$ («");

£

®

Procedure GreedyColoring(G)

Let 7’ be any ordering on nodes;

10 flag(i) < —1fori=1,---,x;

1 for each node v € ' in order do

12 for u € NS do

1 L flag(C(u)) < v;

14 ¢+ min{i|i > 0, flag(i) # v};
15 C(v) ¢

e

w

16 return C(v) for all v € G,

17 Procedure Counting(c, h, cnt)
18 for i = 0 to c do
19 for j = 0 to h do

20 if 7 = 0 then DP(¢,5) < 1;
21 else if i < j then DP(7,) < 0;
22 else

DP(i,j) + DP(i—1,7—1)xcnt(i)+DP(¢—1, j);

23 return DP(c, h — 1);

the number of ways to choose j nodes with different colors
from Group(1) U Group(2) U - - - U Group(%). The computation
of DP(i,7) can be divided into two cases, by considering
whether or not select a node from Group(i).

Case 1: If we choose a node from Group(7), we just need to
choose j — 1 nodes with different color values from Group(1) U
Group(2) U - - - U Group(i — 1). Therefore, in this case, we ob-
tain DP(i — 1,7 — 1) x cnt() colorful (j + 1)-stars centered
at u.

Case 2: When we do not choose a node from Group(i),
we must collect j nodes from Group(1l)U Group(2)U--- U
Group(i — 1) to obtain DP(i — 1, 5) colorful (j + 1)-stars.

We can derive the colorful h-star degree of a node by adding
up the results of the above two cases. Specifically, we are able
to obtain the following recursive DP equation:

DP(i,j) =DP(i — 1,57 — 1) x cnt(i) + DP(i — 1,7), (1)

foralli e [1,...,x],5 €[1,...,h],i > j.
The base cases can be set as follows:

DP(i,0) = 1,foralli € [0,...,]

DP(i,j) = 0,foralli € [0,...,x],j €[0,...,hl,i < j, (2)

Based on (1) and (2), we can compute the colorful h-star degree
of u by dynamic programming.

Example 2: Fig.3 shows the computational procedure of v5’s
colorful 3-star degree. The DP algorithm computes dffs (x") by
gradually involving color groups from “2=Green” to “5=Blue”.
It is impossible to pick two neighbor nodes of different colors
from the first two color groups (DP(2,2) = 0), since there does

not exist a neighbor node of v; with color value “1=Red”.

1109

@ () @ (©)
GROUP @@ @0 O @@ © OO @@ © OO ©
COLOR 2 3 5
CNT 2 1 2 1
DP(5, 1)=6

DP(2,1)=2 - DP(3,1)=3 - DP(4, 1)=5 -,
@02~ DR . DPUDS

s) S
DPQ2,20 —> DP@3,2=2 —> DP@,2-8 ——> DPG,2)=13

Fig. 3. Computation for colorful 3-star degree of vs in Fig. 1(a).

Obviously, there are two ways to choose a node from the first
two color groups (DP(2,1) = 2), because v5 is connected to
two “2=Green” nodes. In order to choose two neighbor nodes
with different colors from the first three color groups (DP(3, 2)),
the DP algorithm can pick one node from the first two color
groups (DP(2, 1)) and then pick another node from any of the
“3=Purple” group (cnt(3)), or do not consider the third color
group and choose two nodes with different colors directly from
the first two color groups (DP(2, 2)). Finally, v5’s colorful 3-star
degree dS (x") = DP(5,3 — 1) = 13 can be computed in the
similar method following an increasing order of color values as
shown in Fig. 3.

Space optimization: Note that in the DP table (DP(i,)
for all ¢ and j), calculating DP(i, j) relies only on the result
of DP(i — 1,7) and DP(i — 1,5 — 1), which are both in the
DP(i — 1,-) array. This means that all the DP(p,-),p <i—1
arrays contribute nothing to this calculation. Therefore, when-
ever computing on the DP table, there are only two active arrays,
DP(i — 1,) for reading and DP(i, -) for writing. Based on this
observation, we can use two rolling arrays to read and write
alternately, which significantly reduces the space consumption
to O(2 x h).

To further optimize the space usage, for each ¢ we compute
DP(4, j) following the descending order of 7, i.e., varying j from
h to 0. Furthermore, we simplify the data structure and reduce
the two-dimensional DP table to a single array of size h. Note
that we can calculate DP(é,j), DP(i,j — 1),...DP(i,5 — 1)
if we have stored DP(: — 1,7),DP(i — 1,5 — 1),...DP(i —
1,7 —1). After x-round iterative calculation, we can obtain
DP(h-1) which is equal to d(x"). The algorithm only con-
sumes O(h) space by using this trick. The following theorem
details the time and space complexity of our DP algorithm.

Theorem 1: Given a graph G, a node v and an integer h,
Algorithm 1 computes the colorful h-star degree of u in O(h X
min{y, d%}) time using O(h) space, where is the maximum
color value of all nodes in G.

Proof: For each node u, the number of color groups of u’s
neighbor nodes is bounded by d%. Thus, the color 7 in the DP
equation in (1) is bounded by min{d<, x}. As a result, the time
complexity of the DP algorithm for computing the colorful h-star
degree of u is O(h x min{x, d%}). For the space complexity,
the algorithm only needs to maintain an O(h) DP table using
the proposed space optimization technique, thus the theorem is
established.]

B. The DP-Based Updating Algorithm

Here we consider the problem of updating the colorful h-star
degree of anode u when one of its neighbor node v is deleted. To

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1110

Algorithm 2: Example of the Updating Algorithm.

Input: A graph G, a node u, the removed neighbor v and h

Initialize C(v), x, cnt as lines 1-5 in Algorithm.1;

2 dS (%) « Counting+(x, h, cnt); // record DP,, < the table
DP in the Counting+ procedure

3 d5\"(+") « Updating(DP.,C(v)):

Procedure Counting+(x, h, cnt)
F()« 0; F0)+ 1; X + 1;
for i = 2 to x do

L for j = hto1do

-

® N ;A

| F(j) < F(G —1) x ent(i) + F(5);

e

for j = 1to h do

10 L G(j) « F(G —1) x ent(x');
u | DP(j) « F(G) +G0):

12 return DP(h-1);

13 Procedure Updating(DP., X')
14 F(0) « 1,

15 fori =1to h do

16 G(i) <+ F(i—1) x ent(x');
17 F(i) < DP(i) — G(3);

18 cnt(x’) < ent(x) — 1;

19 fori=1to h do

20 G(i) <+ F(i—1) x ent(x');
21 DP.(i) + F(i) + G(i);

22 return DP, (h-1);

this end, a straightforward algorithm is to recompute the colorful
h-star degree of u after removing v by using Algorithm 1, which
takes O(xh) time. Clearly, such an algorithm is inefficient when
we need to frequently handle edge removals. A natural question
is that can we have a better algorithm to update the colorful /-star
degree of a node without recomputing from scratch? Below, we
will develop a novel algorithm to achieve this goal.

Our updating algorithm is based on a key observation: the
removal of v reduces cnt(C(v)), thus it only affects the result
computed in Case I of the DP equation. Therefore, it is un-
necessary to re-calculate the entire DP table again, because the
result in Case 2 remains the same. Based on this observation,
we need to decompose the DP equation into two different cases.
Specifically, let us consider a node v and a color value Y’
Then, the colorful (i 4 1)-stars on v can be divided into two
various types: the leaves of colorful (i + 1)-stars are colored
with or without . Let G and F be two arrays where F (i) and
G (i) denotes the number of the former type and the latter type
respectively. More formally, let A be a set of nodes,

P(A) : V{u,w}({u,w} C A — C(u) # C(w))

Q(A) : Vu(u € A — C(u) # X)
Q(A) : Ju(u e ANC(u) =X)
F(i) = HAJA C N7, |A| = i, P(A), Q(A)}]
G(i) = [{AJA C N, |A] = i, P(4), Q(A)}]
DP(i) = [{AJA C N7, |A| = i, P(A)}].

Here DP (i) indicates the colorful (i 4 1)-star degree of v. Then,
we have the following result.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

Theorem 2: After removing a neighbor v, the colorful A-star
degree of u can be updated by the following DP equation

Gi) « F(i— 1) x cnt(C(v))
DP(i) + F(i) + G(7), 3)

foralli € [1,...,h]. The updated d5 " (x") equals DP(h-1).

Proof: First, we set X' as C(v). Apparently, G(i) can be
derived by F(i — 1) x ent(C(v)), because the current colorful
i-stars do not have the leaves with color value x’. Thus, by
picking any neighbor colored by X’ and adding it to colorful
i-stars, we can obtain new colorful (¢ + 1)-stars. All colorful
(7 + 1)-stars contain colorful (7 4 1)-stars both with and without
a neighbor colored by y/, therefore DP (i) = F(i) + G(i). O

The example of the updating algorithm is outlined in Al-
gorithm 2. First, we initialize C(v), x, cnt as lines 1-5 in Al-
gorithm 1; count the colorful h-star degree of u by invoking
Counting+; and record DP,, to be the table DP in the Counting+
procedure.

Second, we re-design a DP algorithm to compute the colorful
h-star degree of w by using the arrays F, G as defined in
(3). The computation of F (i) is similar to the DP procedure
in Algorithm 1. Note that the same trick that computing F
following the descending order of ¢ is also applied to reduce
the space usage (lines 6-8). After that, based on the F array, we
can compute G and DP (lines 9-11).

Third, in the updating stage, we develop a novel technique to
update the colorful A-star degree of u in G /v when any neighbor
v of u is removed, instead of recomputing from scratch. Our
technique is based on the following intuition. When removing
v, the colorful h-stars that are centered on u and contain v
will disappear, and the other colorful h-stars remain unchanged.
Therefore, only G needs to be updated. To achieve this, we need
to restore G and F based on the DP array when we consider the
node u and its deleted neighbor node v. Note that we can use (3)
torestore G and F by DP. A difference compared to the counting
stage is that x’ must be set to C(v) (lines 3, 13), because only
the number of colorful h-stars colored by C(v) will reduce. The
proposed updating technique consists of three steps, restoring
(lines 15-17), updating (line 18) and regenerating (lines 19-21).

S1: In the restoring step, our algorithm restores F(¢) and G (%)
on the basis of DP(i) and cnt(C(v)).

S2: In this step, Algorithm 2 updates the color set of u’s neigh-
bors.

S3: Inthe last step, Algorithm 2 calculates G (i) and DP (i) based
on F (i) and the updated color groups of u ’s neighbors.

Example 3: For the graph G in Fig. 1(a), consider the case
of the removal of v; which is a neighbor node of vs with
color value “4=Yellow”. The entire updating procedure shown
in Fig. 4 contains three steps. First, the updating algorithm
refreshes the elements in G and F alternately according to DP
following the <(1),(2),3),(®> order. Then, the color group
with regard to v; is updated after removing v;. Finally, the
elements of DP and G are replaced by new values indicated in
Green, following the <(5),(6),(7),(®> order. The v5’s colorful

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

® ()
@@ © OO0 © @@ © O ©
cnt mﬂnﬂn remove V, cnt mn.n
0 1 2 0 1 2
P [Te[13] P
DP(1]-G[1 Jl®®l DPRI-G2) cnt(color[V,]]-- FGI]T©Tﬂll+£7[:]
7 F
e G e 2Q N
G [[218] ¢ [121[4]
restoring updating regenerating

Fig. 4. Updating colorful 3-star degree of vs in Fig. 1(a).

3-star degree dS (") = DP(2) will be updated to 9 when the
algorithm terminated.

The correctness of Algorithm 2 can be guaranteed by Theo-
rem 2. A nice feature of our update technique is that both the
restoring and recomputing steps consume O(h) time, which
is much more efficient than the straightforward re-computation
based updating algorithm. The following theorem shows the
time and space complexity of our algorithm.

Theorem 3: Given a graph G, an integer h and a node u,
after removing any neighbor of u, the updating procedure of
Algorithm 2 updates its colorful h-star degree in O(h) time using
O(min{y, dS} + h) space, where is the maximum color value
of all nodes in G.

Proof: For the time complexity, both the restoring and the
regenerating steps consumes O(h) time, and the updating steps
takes O(1) time. Thus, the time complexity of our updating
technique is O(h). For the space complexity, we only need
to store and maintain the arrays cnt and DP, which consume
O(min{x,dS} + h) space for each node. This is because the
size of the array cnt is bounded by O(min{y, d$}, while DP
consumes O(h) space. O

IV. APPLICATIONS OF COLORFUL STAR COUNTING

There are three primary applications for counting colorful
stars: analyzing the structural properties of real-life colorful
graphs, modeling higher-order clustering, and accelerating the
mining of the densest subgraph exhibiting h-clique character-
istics in traditional graphs. In the following sections, we will
focus on elucidating how the techniques of colorful star counting
contribute to achieving the latter two applications.

A. Modeling the Higher-Order Clustering

The colorful h-star can serve as a fundamental building block
for constructing higher-order clustering. Currently, the basic
units of higher-order clustering models primarily include tradi-
tional motifs (such as triangles and four-node stars), cliques, and
hyper-edges. Clustering models that aggregate these elements
mainly consist of spectral clustering and dense subgraph models
(such as k-core [19], k-truss [20], k-ECC [21], and so on.
Since methods like spectral clustering and k-means require a
predetermined number of clusters and lack a definitive struc-
tural commonality in the final clustering results, we focus on
using dense subgraph models for higher-order clustering of the

1111

colorful h-star. Due to space limitations, this manuscript
discusses only the colorful h-star k-core and k-truss models;
however, other models, such as k-ECC, can also be adapted for
extension with some customization. Therefore, this manuscript
aims to explore how to use the colorful h-star as a foundational
element for constructing higher-order clustering, an idea that
may guide future researchers in pursuing more interesting work
on specific problems.

Moreover, using the colorful h-star to model higher-order
clustering enables us to capture both the strength of connec-
tions and the diversity of nodes within a network. While stan-
dard k-core and k-truss models primarily focus on item-based
connectivity, they often overlook the variety and diversity of
connections. By incorporating node colors and considering
higher-order structures like colorful h-stars, we can represent
more complex relationships. This approach allows us to identify
subgraphs that are not only tightly connected but also involve
diverse and meaningful interactions among nodes.

In this section, we introduce two innovative models for higher-
order cohesive subgraphs: the colorful h-star k-core/truss. Next,
we devise a near-linear peeling algorithm, leveraging the count-
ing and updating techniques specifically designed for colorful
h-stars.

1) The Colorful H-Star Core Model: We start by reviewing
the definition of the classical k-core [19], and then introduce the
concept of colorful A-star core. Given a graph G and an integer
k, a k-core, denoted by Cy, is a maximal induced subgraph of
G such that every node in C has a degree no smaller than £,
ie., dg’f > k for every u € Cy, [19]. The core number of a node
u, denoted by ¢, is the largest integer k such that there exists a
k-core containing « [19]. The maximum core number of a graph
G, denoted by ¢, is the maximum value of core numbers among
all nodes in GG. The maximum core number ¢ is also referred
to as the degeneracy of G [22]. The k-cores have four crucial
properties: (a) k-cores are nested, more formally, C; C Cj if
i > j; (b) a k-core can be disconnected; (c) dgk > ¢y (d) the
k-core is unique and the core decomposition can be computed
in O(m + n) time [23].

Inspired by the definition of the k-core, we define the colorful
h-star k-core as follows:

Definition 4 (Colorful h-star k-core): Given a colored graph
G, an integer k and the size h of a colorful star «”*, a colorful
h-star k-core, denoted CSCy(*") (abbr. CSC}), is a maximal

subgraph such that Vu € Viger, dS5C* (x") > k.

Based on Definition 4, the colorful A-star core number of u,
denoted by csc,, (x") (abbr. cscl), is the largest k such that there
exists a colorful h-star k-core containing u. And the maximum
colorful h-star core number of a graph G, denoted by csc, is
the maximum value of colorful h-star core numbers among all
nodes.

Example 4: Let %® be a colorful 3-star. Fig. 5(a) depicts
k-cores of the graph in Fig. 1(a). The number k in each rectangle
indicates the k-core contained in that rectangle. For example, the
subgraph induced by {v1, v, v3, v4, vs5, v, v7 } is a 3-core. The
entire graph is the 0-core, 1-core and 2-core. Fig. 5(b) shows all
CSC% of the graph. The number £ in each rectangle indicates
the CSC3 contained in that rectangle. For example, the subgraph

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1112

(a) k-core(Cy)

(b) colorful 3-star k-core (CSC})

Fig. 5. k-core and colorful h-star k-core.

induced by {vs, vy, v5, v, v7} is a CSC% since each node in the
5-clique participates in 6 colorful 3-stars. We can see that k-
cores and (x3, k)-cores are the same for k = 3, 4, but obviously
different when k = 1, 2.

Similar to k-cores, it is easy to derive that the colorful h-star
k-core also have the following properties: (a) CSCZ are nested,
that is for any two integers ¢ and 7, if i > j, then CSC? - CSC?;
(b)a CSCZ may be disconnected; (c) cscl < d%(x"); (d) CSCZ
are unique, which means that there exists only one CSCQ for a
specific h in G. Below, we show that the colorful h-star cores
can be computed in near-linear time.

Based on Definition 4, we define the colorful h-star core
decomposition problem as follows.

Problem 2 (Colorful h-star Core Decomposition): Given a
colored graph GG and an integer h, the goal of colorful A-star core
decomposition is to compute the colorful h-star core numbers
for all nodes in G.

The challenge of mining a colorful h-star k-core arises pri-
marily from the difficulty of efficiently counting colorful h-stars,
especially for nodes with high degrees. A straightforward ap-
proach, which involves enumerating all h-stars for each node and
counting the valid colorful ones, is computationally intractable
due to combinatorial explosion. This problem is further com-
pounded by the lack of a combinatorial formula for directly
computing the colorful h-star degree of a node. To address
this, practical solutions must be developed to compute the
colorful h-star degree without resorting to brute-force enumer-
ation. Additionally, when the graph is updated, a fast method is
needed to update the colorful i-star degree without recomputing
it from scratch. Moreover, mining the colorful h-star k-core,
which involves finding maximal subgraphs where each node
has at least k colorful h-stars, presents further complexity. This
requires simultaneously preserving the structural and colorful
constraints, making the problem even more challenging in large-
scale graphs.

Itis easy to derive that a colorful h-star k-core can be obtained
by iteratively removing nodes whose colorful h-star degrees
are less than the given k. Therefore, we can devise a peeling
algorithm to determine the core numbers for all nodes, which
iteratively deletes the node with the smallest colorful h-star
degree. Such an peeling algorithm is outlined in Algorithm 3.

First, Algorithm 3 computes the colorful h-star degree for
each node in V' using the DP algorithm given in Algorithm 2

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

Algorithm 3: The Colorful h-Star Core Decomposition.

Input: A graph G = (V, E) and an integer h
Output: The colorful A-star core number for each v € V'
1 Initialize C(v), x, cnt as lines 1-5 in Algorithm.1;
2 for v € V do deg[u] < Counting+(u); / Algorithm 2
3 Sort nodes in a non-decreasing order of their colorful h-star
degrees;
4 H + G;max_core < 0;
5 fori < 11 |V|do

6 u ¢ argmin, ¢y, deg[v];

7 if deg[u] > max_core then

8 | max_core + deg[ul;

9 csclt +— max_core;

10 for each w € NI do

11 | deg[w] < Updating(DP.,C(w)); // Algorithm 2
12 Delete u from H;

13 Resort the nodes of H;

4 return csc? for each node u € V;

—

(lines 1-2). Then, the nodes are sorted in a non-decreasing order
of their colorful h-star degrees (line 3). Next, the algorithm
removes the node with the minimum colorful h-star degree (lines
5-13). Note that in each iteration, we assign the current updated
max_core to the colorful h-star core number of u (lines 7-9).
After that, we update the colorful h-star degrees of neighbor
nodes of u by invoking the proposed Updating algorithm (lines
10-11). Algorithm 3 deletes « from H and re-sorts the nodes of
the remaining graph (lines 12-13). Finally, we return csc? for
each node v € V' (line 14). Obviously, the The colorful h-star
core number can be derived from the final max_core. Below, we
analyze the time and space complexity of Algorithm 3.

Theorem 4: Given a graph G and an integer h, Algorithm 3
computes the colorful h-star core decomposition in O(hm) time
and O(hn + m) space.

Proof: The graph G can be colored in linear time by using
a greedy coloring algorithm [12], [13]. For each node u, we
need to compute colorful h-star degree of u, i.e., d5 (x"), which
takes O(hy) time, where x is the maximum color value of
all nodes in G. Note that, since we only need to consider the
neighbors of u when computing the colorful h-star degree of wu,
the time overhead of the DP algorithm can be further reduced to
O(hmin{d,, x}). Thus, the total time overhead for calculating
the colorful h-star degrees for all nodes is bounded by O(hm).
Similar to the linear-time core decomposition algorithm, we
can employ a bucket sort technique [24] to sort and re-sort
nodes of H, which takes linear time. When removing a node
u, the time overhead for updating the colorful h-star degree of
a neighbor v is O(h), thus the total time to update the colorful
h-star degrees for all u’s neighbors can be bounded by O(d,,h).
Since each node is deleted once, the total updating time of the
algorithm is O(hm). For the space complexity, the algorithm
takes O(h + min{y,d,}) space to compute and update the
colorful h-star degree of a node u, thus the total space complexity
of our algorithm is O(hn + m). O

Note that when h = 2, a colorful 2-star is exactly an edge,
and d%(x") = d%. In this case, the colorful 2-star core de-
composition turns into the classical core decomposition. The

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

Algorithm 4: The Colorful h-Star Truss Decomposition.

Input: A graph G = (V, E)) and an integer h

Output: the h-colorful k-truss classes CST] for k € [2 : kmau]
1 Initialize C(v), x, cnt as lines 1-5 in Algorithm.1;
2 for each e, € E do
3 sup™ (G, eyy) < counting the (h-2)-colorful node set in
N(u)N N (v); // avariant of Counting+ in Algorithm 2

4 k< 2,R+ E;CST < 0;

5 while R # () do

6 Q « 0; CSTIK] « 0;

7 for each ey, € R do

8 if suph(G7 €uv) < k then

) | Qpopleas);
10 while Q # 0 do

11 euv < Q.push(); CST[k].add(eyy); Rrm(eus);
12 for (u,w) € Rdo

13 L sup" (G, eyw) updating by removing node v

/I a variant of Updating in Algorithm 2

14 if suph(G, euw) < k then Q.push(eyw);

15 for (v, w) € R do

16 sup” (G, eyw) < updating by removing u;

17 if suph(G, evw) < k then Q.push(eyw);

18 Output C'ST[k] to be an h-colorful k-truss class;
19 | k< k+1

core decomposition takes O(m) time using O(m + n), which
is consistent with our results.

2) The Colorful H-Star Truss Model: A k-truss is the max-
imal subgraph where every node each edge is contained in at
least k-2 triangles [25]. A triangle A, is a 3-length cycle
which contains the edges (u,v), (v, w) and (v, w). The support
of an edge e,, = (u,v) in graph G = {V, E'} is the number of
triangles containing €., i.e., sup(G, eyy) = [{ Duvw|w € V}.
Therefore, a k-truss in GG, denoted by Ty, is a maximal subgraph
H, such that Ve, € E,sup(H,ey,) > k — 2. Besides, the k-
truss number of the edge e is the maximal truss number such
that there is a k-truss containing e.

Inspired by the definition of the k-truss, we define the colorful
support of the edge e,,, and the h-star k-truss as follows:

Definition 5 (h-colorful support): Given a colored graph
G=(V, E,C) and parameter h > 3, the h-colorful support of
an edge e,,=(u,v) in G, i.e., sup”(G, ey,), is number of the
(h-2)-colorful node sets in N (u) N N (v).

Note that, a h-colorful node set is a set of h nodes in which
any pair of nodes has different colors (defined in Section II).

Definition 6 (Colorful h-star k-truss): Given a colored graph
G, parameters h and k, a colorful h-star k-truss, denoted by
CSTy(x") (abbr, CSTZ), is a maximal subgraph such that
Veu, € ECSTZ,suph(CSTZ, Cus) > k.

The h-colorful truss number of an edge e € Ey, denoted
by cst.(x") (abbr. csth), which equals max{k|e € CST'}. It
follows that given cst? = k, e € CST} bute ¢ CST/ . Based
on the colorful truss number, the colorful A-star k-truss class

CST} is a maximal set of edges in which the colorful truss
number of each equals k, i.e., CST} = {e € Eg|cst! = k}.

Based on Definition 6, we define the colorful h-star truss
decomposition problem as follows.

1113

Problem 3 (Colorful h-star Truss Decomposition): Given a
colored graph GG and an integer h, the goal of colorful A-star truss
decomposition is to compute all the h-colorful k-truss classes,
i, CSTY, for 2 < k < kpmax.

The challenge of mining a colorful h-star k-truss is more
complex compared to the colorful h-star k-core due to the
stricter requirements for edge support. Both problems deal with
the difficulty of counting colorful h-stars, but while the k-core
focuses on vertex degrees, the k-truss requires each edge to be
supported by at least k — 2 colorful h-stars, making it a denser
and more computationally intensive task. In the k-truss, how-
ever, the focus shifts to edge support, which requires counting
the number of triangles that each edge forms, adding complexity
to both the counting and maintenance of the subgraph structure.
Additionally, truss decomposition, which involves removing
edges based on insufficient support, is a more complex operation
than the vertex removal in the core. Thus, while both problems
face challenges related to counting and dynamic updates, the
k-truss presents a greater difficulty due to the need to maintain
denser subgraph structures and ensure adequate edge support in
colorful h-stars.

The method of truss decomposition in question is also based

on a bottom-up approach. It is evident that a CST} 1 must nec-

essarily be a CST/'. Therefore, we can attempt to find a CST 11

within a CST? by deleting certain edges. The pseudocode for
this algorithm is elaborated in Algorithm 4.

Algorithm 4 begins by initializing C(v), x, and cnt as outlined
in lines 1-5 of Algorithm 1 (line 1). Subsequently, the algorithm
initializes the computation of the h-colorful support values for
all edges (lines 2-3), which can be performed using a dynamic
programming algorithm similar to Algorithm 2. Next, the al-
gorithm creates a set R to store the collection of edges under
consideration, as well as a set C'ST to store all the h-colorful
k-truss classes (lines 4). If the set R is not empty, then all
nodes in R are placed into the queue () if the h-colorful support
sup"(G, eyy) < k (lines 6-9). The algorithm then proceeds to
consider each edge e, in the queue) one by one. For each
edge that includes node u or v, the h-colorful support values are
updated (lines 12-17). Note that this update procedure can be
obtained using a Updating procedure akin to Algorithm 2. For a
given k, once the queue () is empty, it signifies that the remaining
edges have an h-colorful support of & or greater. Therefore, these
remaining C'ST'[k] are output as an colorful h-star k-truss class
(line 18). The value of k is then incremented by 1, and the loop
continues to find all colorful h-star k-truss classes.

Example 5: Fig. 6 depicts the colorful 3-star k-trusses of
the graph in Fig. 1(a). We can see that the whole graph with
all the edges are colorful 3-star O-truss since the edges (vs, vg)
and (vs, vg9) have 3-colorful support of 0 since N (vs) N N (vs)
and N(vs) N N(vg) are (). After peeling the edges (vs,vs)
and (vg,vg), the truss number of the edges in the remained
graph is 1 since all the edges are contained in at least one
triangle. Next, after removing the edges (vg, v9) and (v7, vg),
the remained graph is a CST%. Finally, the graph induced by
{3, v4,v5,v6,v7} is a CST} since the 3-colorful support of
each edge in this subgraph is 3.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1114

Fig. 6. colorful 3-star k—truss(CSTi).

Theorem 5: Given a graph G and an integer h, Algorithm 4
computes the colorful h-star truss decomposition in O(hm?!-®)
time and O(hm) space.

Proof: Consistent with Algorithms 3 and 4 initially colors
the graph in linear time by employing a greedy coloring algo-
rithm. Subsequently, for each edge within the colored graph,
the algorithm calculates the h-colorful support for that edge. To
accomplish this, for each edge e,,,, it is necessary to determine
N(u) N N(v), which requires O(m x max(N(u) N N(v))).
Alternatively, if we consider enumerating all triangles within
the graph, the N(u) N N(v) for each edge e,, can be natu-
rally obtained. The time complexity for enumerating triangles
is O(m!%) as referenced in [25]. Once N(u)N N(v) is as-
certained, according to Algorithm 2, computing the h-colorful
support for these m edges demands O(mh). Therefore, the time
complexity for lines 1-3 is O(mh + m'®). Moving forward,
each removal of an edge necessitates an update of the h-colorful
support for the endpoints of the edge, which takes O(h) time
(lines 13,16). The number of such updates is proportional to
the number of triangles in the graph. Consequently, updating
all edges requires time complexity of O(hm!-®). In summary,
the total time complexity of Algorithm 4 is O(hm!®). Regard-
ing space complexity, the algorithm allocates O(hm) space
for the computation and update of the h-colorful support of
each edge, hence the overall space complexity of the algorithm
is O(hm). O

B. Speeding up H-Clique Densest Subgraph Mining

In this section, we show that our colorful h-star core decom-
position technique can be used to speed up the state-of-the-art
approximate algorithm for mining h-clique densest subgraph.
Below, we first briefly review this problem. Note that existing
algorithms for the h-clique densest subgraph problem can be
classified in two categories: exact algorithms and approximation
algorithms. Even though the exact algorithms based on the
max-flow technique can solve this problem in polynomial time
for small % values [15], this problem can be NP-hard for a large
h. Because the number of h-cliques in a graph is exponential
in the size h, counting h-clique is often deemed infeasible
when h is large. Thus, we focus mainly on the approximation
algorithms, and discuss two state-of-the-art approximation al-
gorithms (Section IV-B2) to solve this problem. We propose
an efficient graph reduction technique, based on the colorful A-
star core decomposition, to significantly prune the unnecessary

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

Fig. 7. h-clique k—core(CCZ).

nodes from the given graph without sacrificing approximation
performance (Section IV-B3).

1) The H-Clique Densest Subgraph: Given a graph G, an
h-clique (X") is a subgraph with A nodes such that each pair of
nodes is connected with an edge. The h-clique number of G is
the number of h-cliques in G. We also denote d$ (X") to the
number of h-cliques that u participates in.

Definition 7 (: h-CLIQUE DENSITY) Given a graph G and an
integer h, for any induced subgraph H, Vi C Vi, its h-clique
density is defined as o, (H) = %j@h)'

Problem4 (: H-CLIQUE-DS-PROBLEM) Given a graph GG and
an integer h, the problem is to find a subgraph H* that achieves
the largest h-clique density among all subgraphs of G, and let
on(H*) be the density of the h-Clique densest subgraph.

Fang et al. [14] introduced a concept of h-clique core, which
can help achieve a good approximation to the H-CLIQUE-DS-
PROBLEM (abbreviated as h-CDS).

Definition 8 (: h-CLIQUE k-CORE [14]) Given a graph
G, parameters k and h, the h-clique k-core, i.e., CCk(&h)
(abbr. CCZ), is a maximal subgraph in G, such that Vu € cch,
dy (CCH)Y > k.

We denote the h-clique core number of a node u € V' by
cc, (M) (abbr. ccl), which is the largest k such that there exists
an h-clique k-core containing u. The maximum h-clique core
number of a graph G, denoted by cc, is the maximum value of
h-clique core numbers among all nodes.

Example 6: Fig. 7 illustrates the h-clique k-cores of the
graph. Each rectangle displays the number k, representing the
CC} contained within it. For instance, the subgraph induced by
{v3, v4,v5,v6,v7} corresponds to the CCY. In this case, every
node in the 5-clique participates in six 3-cliques. Furthermore,
ccy = 3as vy is part of the CC3 and is not a member of CC3.

The following theorem shows that the CCZ is a good approx-
imation of the h-clique densest subgraph [14].

Theorem 6 (Approximation Solution [14]): Given a graph
G and an h-clique, the CC" is a %-approximation solution
to h-clique densest subgraph problem, such that o, (CC) >
o (H")

Zh) Existing Approximation Algorithms: Core-based approx-
imation algorithm: Fang et al. established lower and upper
bounds on the h-clique density for each CSCZ [14]. Based on
these bounds, they computed the upper and lower bounds of
the density of the h-Clique densest subgraph. They also found
that the h-clique densest subgraph is located in some specific

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

CSC?, and the CCZC isa %-approximation solution. Therefore,
to obtain the CC" ., unlike the straightforward method which
greedily peels the node with the minimum A-clique degree, they
proposed the CoreApp algorithm which focuses on comput-
ing the CC", directly based on the observation that nodes in
CCZG tend to have higher h-clique degrees. The main defect of
CoreApp is that it needs to compute the CCZC on the entire graph
and doubles the size of candidate nodes set between different
iterations from V'(G), which is very costly. Since a large number
of nodes actually contribute nothing to the CC”.., considering
those unpromising nodes in the computational procedure causes
much unnecessary time consumption.

Sampling-based approximation algorithm: Sun et al. pro-
posed a sampling algorithm, called SeqSamp, which can obtain
an approximation of the h-clique densest subgraph [17]. The
general idea of the SeqSamp algorithm is as follows. First, the
algorithm maintains a variable r(u) for each node u, and assigns
every h-clique to the node v with the minimum r value among the
nodes in the h-clique and increases 7(v) by 1. Then, SeqSamp
sorts nodes of V' in an increasing order according to their r
values. After that SeqSamp computes the h-clique density of
the subgraph induced by the first s nodes for each s € [n], and
returns the subgraph which achieves maximum h-clique density
among all n subgraphs. To save memory usage, the algorithm
stores each h-clique into main memory independently with
probability p = m, where o is a parameter which
represents the approximate number of h-cliques to be sampled.
The main limitation of SeqSamp is that it suffers from a loose
upper bound even after a large number of iterations. Thus, to
obtain a good approximation, such an algorithm often needs a
long time as confirmed in our experiments.

However, SeqSamp is not scalable for large k values and
large-scale graphs because it requires repeated enumeration of
all k-cliques from the graph in each iteration. To address this is-
sue, He et al. [26] propose SCTL, which builds an index structure
to expedite the k-clique enumeration process by leveraging the
succinct clique tree from pivoter. SCTL constructs a tree that
maintains a unique representation of all k-cliques, occupying
significantly less space than storing all k-cliques directly, thus
allowing the tree to remain in memory. With the help of the
succinct clique tree and various optimization techniques, SCTL
achieves greater efficiency compared to SeqSamp. Nonetheless,
SCTL still requires enumerating all k-cliques in the worst case to
update vertex weights during each iteration, making its running
time proportional to the number of k-cliques present in the
graph.

Additionally, Fang et al. [27] propose a SOTA approach by
employing a simple yet effective Frank-Wolfe-based framework
that utilizes k-clique counting instead of k-clique enumera-
tion. The Frank-Wolfe algorithm operates iteratively, initially
assigning a weight r(v) to every vertex v in the graph, with
this weight set to the number of k-cliques containing v divided
by k. In each iteration, the algorithm identifies the vertex v
with the minimum weight for every k-clique and updates its
weight (v). They discover that the change in r(v) for the vertex
with the minimum weight can be determined using the number

1115

of k-cliques that include v. Building on this observation, they
develop a novel framework based on a k-clique counting algo-
rithm. By integrating these techniques, they create an efficient
(1 + €) k-clique counting-based approximation (KCCA) algo-
rithm, where ¢ > 0.

3) The Colorful h-Star Core Based Algorithm: The CCP,
achieves a %-approximation to the H-CLIQUE-DS-PROBLEM, but

computing the CC'CEC on the graph is a time-consuming task. In
this subsection, we present an effective pruning strategy to re-
duce the graph G based on our colorful /-star core model without
sacrificing accuracy. Note that our graph reduction technique can
be considered as a preprocessing approach which can be used to
speed up the computation of CCZC based approximate h-clique
densest subgraph algorithm.

Observation: Assume that there is a clique of size w in G,
and then the w-clique must be contained in an h-clique 6-core,
here @ = (/). This is because each node in this w-clique
participates in at least # h-cliques in G, which provides a
nontrivial lower bound for the maximum h-clique core number
> 6. Obviously, the larger a clique we can obtain is, the tighter
our lower bound will be. Thus, our goal is to find a clique as
large as possible. Since finding the maximum clique is NP-hard,
we can use a linear-time greedy maximum clique algorithm
proposed by Rossi et al. [28] to find a large clique.

The basic pruning rule: Suppose that we have a large clique
with size w computed by the greedy algorithm [28]. Then, we
have the following result.

Theorem 7: Given a graph G, and an h-clique, the h-clique
f-core CC is contained in the (w-1)-core, where w is the size
of a large clique of G and 6 = (',‘I’ll)

Proof: For each node v € CCQL, the following inequalities
h

) , CcC
hold that (V) < dS<¢ () < dS<0 (h-star) = (%).

It provides a lower bound dg G > w-1 of the degree, indicat-
ing that CCJ must be contained in the (w-1)-core. O

The above analysis inspires us to first reduce the input graph
G to a (w-1)-core based on the fact that the CC", is a sub-
graph of the (w-1)-core. Although shrinking the graph G to
a (w-1)-core eliminates a number of nodes with core number
less than w-1, the remaining graph may still be very large,
because the (w-1)-core is often far from the final h-clique
densest subgraph. Therefore, we strive to seek a more effective
reduction technique on G to further prune the (w-1)-core. We
can achieve this by applying our colorful h-star core decompo-
sition to further remove the unnecessary nodes for computing
the CC%..

The advanced pruning rule: Reconsider the colored graph
G and the h-clique A-core CC}. Clearly, each node of CCJ)
participates in at least 6 cliques, thus it is also contained in at
least 6 colorful h-stars. This is because nodes in a clique must
have different colors, suggesting that ch must be contained
in the colorful h-star 6-core CSCZ . Therefore, we can use the
colorful h-star f-core for pruning unpromising nodes. Moreover,
the following theorem shows that the colorful h-star f-core
pruning technique is more effective than the (w-1)-core pruning
strategy.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1116

Algorithm 5: h-CDS by Colorful A-Star Core Reduction.

Input: A graph G and an integer h
Output: The (6, +")-core

1)" < compute a large clique using a greedy algorithm
proposed in [28] ;

w4 [Vanl, 0 < (575

Cy-1 + compute the (w-1)-core using the peeling algorithm
in [23];

CSCh ColorfulStarCore(Cy-1, h, 0);

return CSC}, ;

Procedure ColorfulStarCore (H, h, k)
for u =1 to |Vx| do
L df (+M) + Counting(u);
9 Let @ be an empty queue;
for each v € H do

w N

wn s

° N &

—
=]

1 if d (x") < k then

12 | PushvtoQ;

13 while Q # () do

14 Pop a node u from Q;

15 for each v € NI do

16 df\u(*h) <+ Updating(DP,v);
17 it ¢\ (+") < k then

18 | Pushoto Q;

19 | Delete u from H;

20 return H;

Theorem 8: Given a graph GG, and an integer h, the colorful
h-star §-core CSCJ is contained in the (w-1)-core of G, where
w is the size of a large clique of G, and 6 = (%}).

Proof: Similar to the proof of Theorem 7, for each node v €

h
CSC}, the following inequalities hold that (;‘:11) < 45> (xh) <
h csch
535G (h-star) = (dz_le)
h

As a consequence, we have d%sce > w-1, thus CSCZ is an
induced subgraph of C,, ;. O

Based on the above analysis, to approximate the h-clique
densest subgraph, we can progressively eliminate the unpromis-
ing nodes and shrink the input graph G to a smaller and smaller
subgraph based on the following core-reduction order

G 2 Cy 2 CSC O CC.

Our colorful h-star core based graph reduction technique is
shown in Algorithm 5. Algorithm 5 first applies the (w-1)-core
reduction (lines 1-3), and then performs the colorful h-star core
pruning on the (w-1)-core (lines 4-20). Note that the algorithm
uses a similar peeling procedure to iteratively remove the nodes
with colorful -star degree smaller than 6 to compute the colorful
h-star f-core (lines 6-20). It is easy to show that the time com-
plexity of Algorithm 5 is O(hm). This is because the lines 1-3
takes O(m) time, and the computing of the colorful h-star §-core
uses O(hm) time.

A heuristic approach: Since a colorful h-star is a good relax-
ation of an h-clique, the colorful /-star core can also be used to
approximate the h-clique core. The h-clique cc-core has been
proved to be a %-approximation of H-CLIQUE-DS-PROBLEM.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

TABLE II

DATASETS
Dataset [n = |V‘ m = |E| [X dmax
Nasasrb 54,870 1,311,227 38 275
Pkustk 87,804 2,565,054 54 131
Buzznet 101,163 2,763,066 62 64,289
Pwtk 217,891 5,653,221 42 179
DBLP 317,080 1,049,866 | 114 343
MsDoor 404,785 9,378,650 42 76
Digg 770,799 5,907,132 66 17,643
LDoor 909,537 20,770,807 42 76
Skitter 1,694,616 11,094,209 71 35,455
Orkut 2,997,166 106,349,209 79 27,466
LiveJournal | 4,847,572 42,851,237 | 324 20,333

Therefore, the colorful h-star cSc-core should also provide a
good approximation solution. That is to say, we can obtain a
heuristic algorithm by just computing the the colorful h-star
csc-core on G using Algorithm 3 as an approximation of the
h-clique densest subgraph (as defined in Section IV-Al, csc is
the maximum value of colorful A-star core numbers among all
nodes).

V. EXPERIMENTS

A. Experimental Setup

Datasets: We collect 11 large real-world graphs from two
different sources, including (1) Stanford Network Analy-
sis Project (SNAP) (http://snap.stanford.edu/data/), and (2)
Network Repository (https://networkrepository.com/). These
datasets cover various domains, such as online social networks
(e.g., Buzznet, Digg, Orkut and LiveJournal), collaboration
networks (e.g., DBLP), internet topology graphs (e.g., Skitter)
and scientific computing networks (e.g., Nasasrb, Pkustk, Pwtk,
MsDoor and LDoor). The detailed statistics of the datasets are
summarized in Table II. In Table II, x and d,,.x denote the
number of colors obtained by a greedy coloring algorithm and
the maximum degree of the graph respectively.

Algorithms: Due to the efficient enumeration and updating ca-
pabilities of colorful h-stars through the use of a novel dynamic
programming (DP) algorithm, we demonstrate the advantages
of DP, particularly the update algorithm, by applying it to
the decomposition of colorful A-star core and colorful h-star
truss.

For the colorful h-star core and truss decomposition, we
have incorporated two baselines: k-core and k-truss, to serve as
reference tests. Additionally, we implemented four algorithms
proposed in this manuscript:

e KCore [29] serves as a baseline that outputs the traditional
k-core. We implement it using a SOTA peeling algorithm
based on bin-sorting, which has a time complexity of
O(m).

e (CSC-DP is an algorithm to compute colorful h-star core
which recomputes the colorful h-star degrees of its neigh-
bors using the proposed DP algorithm after removing a
node.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data/
https://networkrepository.com/

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

e CSC-DP+ is plus version of CSC-DP which uses the
proposed updating technique to update the colorful h-star
degrees.

e KTruss [20] serves as a baseline that outputs the traditional
k-truss. We implement it using a SOTA peeling algorithm,
which has a time complexity of O(m?!5).

e CST-DP is an algorithm to compute colorful h-star truss
which recomputes the h-colorful support the edges using
the proposed DP algorithm.

e CST-DP+ is plus version of CST-DP which uses a up-
dating technique to update the h-colorful support of the
edges.

For the h-clique densest subgraph problem, we implement

our two algorithms:

e h-CDS first performs our colorful h-star core based pruning
on (G, and then calls CoreApp [14] on the reduced graph.

e h-CDS+ is the heuristic approach using the colorful h-star
csc-core as an approximation solution.

and four state-of-the-art algorithms:

e CoreApp [14]isa h-clique core based approximation algo-
rithm which can obtain a 1/h approximation (we slightly
modify the origin method with some graph reduction to be
more efficient).

e Exact is an exact solution [17] using the max-flow tech-
nique.

e SeqSamp [17] is a version of the sampling algorithm
SeqSamp with the number of iterations 7" = 1.

e SeqSampl28 [17] is a version of SeqSamp with the
number of iterations 7' = 128.

e SCTL [26] is an approximation algorithm that counts
the number of k-cliques in the approximate solution by
selectively traversing an index with the number of iterations
T=1

e KCCA [27] is an approximation algorithm that based on
an efficient (1 + €) k-clique counting-based approach with
T=1.

Parameters: We have only one parameter /. in our experi-
ments. Unless otherwise specified, we evaluate all algorithms
with a varying h from 3 to 9. In all our experiments, we set time
limit to 24 hours for each algorithm, and “INF” for the running
time of any algorithm which exceeds 24 hours. We implement
all our algorithms in C++. All experiments are conducted on a
Linux machine equipped with a 2.9 GHz AMD Ryzen 3990X
CPU and 256 GB RAM running CentOS 7.9.2 (64-bit).

B. Results of the Colorful h-Star k-Core/Truss Problem

Exp-1: Runtime of different algorithms: Fig. 8 presents the
running time results for KCore, CSC-DP+, CSC-DP, Ktruss,
CST-DP, and CST-DP+ across different datasets for h = 6.
We also tested other values of h and found that the results
remain consistent. It is evident that CSC-DP+ is 2 to 7 times
faster than CSC-DP across all datasets. For instance, on the
livejournal dataset, the total running time of CSC-DP is 115.1
seconds, whereas CSC-DP+, enhanced by the proposed updating
technique, only takes 28.2 seconds, making it approximately
4 times faster than CSC-DP. However, both CSC-DP+ and

1117

KCore —@— CSC-DP+—#— CST-DP —4&—
1K | CSC-DP —®— KTruss —»<— CST-DP+—¥—

Time (sec)

—_
- o
S S

—

o

Nssasrgk“sqs“zmefwtk DBrp Mspo, Digg LDoo, Sklttefrkut lee%ur

Fig.8. Running time of KCore, CSC-DP+, CSC-DP, Ktruss, CST-DP, and
CST-DP+ (h = 6).

DBLP —&—
MsDoor

Pwtk —<—
Digg —%—

DBLP —&—
MsDoor

Pwtk —<—
Digg —%—

o

Time (sec)
Time (sec)

o
o

)
)
)
°

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

(a) Medium-sized graphs (h = 4) (b) Medium-sized graphs (h = 6)

1K rLDoor —#— Orkut 1K (LDoor —i— Orkut

> Skitter —@—LiveJournal —v— > Skitter —@—LiveJournal —w—
3 100 3 100
z —v—v z —v—v
10 —~ 7 10 —v— 7
o g Y Q — -
£ v ,,,,,,.'—’iff'—- =t v e :::'t—i
& v _a— = ! M
|
0.1 0.1
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

(c) Massive graphs (h = 4) (d) Massive graphs graphs (h = 6)

Fig.9. Scalability of CSC-DP+.

CSC-DP perform slightly worse than KCore, as KCore does not
consider higher-order attributes, making it the fastest baseline.
Similarly, CST-DP+ is 2 to 3 times faster than CST-DP across
all datasets. The difference between CST-DP+ and CST-DP is
smaller compared to CSC-DP+ and CSC-DP, primarily because
truss-based algorithms require more time for peeling. Compared
to the baseline KTruss, the performance gap of CST-DP+ fol-
lows a linear pattern, keeping it within an acceptable range
for practical applications. Additionally, it can be observed that
CST-DP and CST-DP+ are slower than CSC-DP+and CSC-DP.
On the LiveJournal dataset, CST-DP requires 403.21 seconds,
which is slower than CSC-DP+. This is because CST-DP
theoretically requires O(hm!-%) time, whereas CST-DP only
requires O (hm) time. Moreover, across all datasets, CST-DP is
consistently slower than CST-DP+. These results confirm our
theoretical analysis shown in Sections III and IV.

Exp-2: Scalability: Fig. 9 shows the scalability of CSC-DP+
on 8 different datasets. Due to the fact that CST-DP+ employs a
similar DP update algorithm, its scalability results are analogous
to those of CSC-DP+. Owing to space constraints, the scalability
tests for the CST-DP+ algorithm are omitted here. Those 8
datasets can be divided into two sets according to their number
of edges: four medium-sized graphs, which are DBLP, Pwtk,
Digg, and MsDoor and four massive graphs, including LDoor,
Orkut, Skitter, and LiveJournal. For each dataset, we generate
four subgraphs by randomly sampling nodes from 20% to 100%.
Fig. 9 shows the results of h = 4 and h = 6, and similar results
can also be observed with other parameters. As can be seen, the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1118

GraphSize [CST-DP+ (h=4)2 7
CSC-DP+ (h=4)077771 CST-DP+ (h=6)"
100GB CSC-DP+ (h=6)!
)
S 10GB o)
5 1GB N
= 7w / 7 7 mn
100M 2 I D i ’ mv /
oM | NV o N A
o AL A L
Nasas pkusePuzzp ek PBLe MsDog Plgg Do, Skite Orkue LiVeJOUr
Fig. 10. Memory overhead of algorithms on different datasets (h = 4, 6).

KCore —®@— KTruss — < —
CSC-DP+—®— CST-DP+—4—

N oW W
G S O

W

Relative density
(353
(=]

o

o w

Masqg, Phuge, Buzzn Potk DBrp Mobog, Pgg oo, Skity Ofkug Li‘,eJoUr

Fig. 11. Effectiveness of KCore, CSC-DP+, Ktruss, CST-DP+ (h = 6).

running time of CSC-DP+ increases smoothly as the graph size
increases on both medium-sized and massive graphs. Moreover,
all the curves are nearly linear, indicating that our algorithm
scales very well in practice. These results also confirm the
near-linear time complexity of our CSC-DP+ algorithm (i.e.,
its complexity is O(hm)).

Exp-3: Memory overhead: Fig. 10 shows the memory usage
of our CSC-DP+ and CST-DP+ algorithms on various datasets
for h =4 and h = 6 respectively. The results are shown in
Fig. 10. Similar results can also be observed for the other
values of h. From Fig. 10, we can see that the memory cost of
CSC-DP+ is insensitive w.r.t. i on all datasets. This is because
the space complexity of CSC-DP+ is O(hn + m), and O(hn)
in the space complexity is usually much smaller than O(m)
(see Table II) on real-world graphs. For the graphs with a
relatively large color number, such as DBLP and LiveJournal,
the space consumption of CSC-DP+ is around 10 times higher
than the graph size, while for the other datasets, the space
usage of CSC-DP+ is only slightly larger than the graph size.
Additionally, it is noticeable that the space usage of CST-DP+
increases modestly with the growth of h. This is despite the
space complexity of CST-DP+ being O(hm). As h increases,
the number of (h — 2)-colorful node sets within the intersection
of N(u) and N(v) for edge e, is reduced. Although the the-
oretical space complexity indicates a linear increase, in reality,
the h-colorful support for many edges diminishes as h rises.
Therefore, the spatial scalability of CST-DP+ remains quite
good.

Exp-4: Effectiveness of different models: Fig. 10 and 11
presents the relative density of the KCore, CSC-DP+, Ktruss, and
CST-DP+ models when h = 6. Since the results for CSC-DP+
and CSC-DP, as well as for CST-DP+ and CST-DP, are con-
sistent, we omit the results for CST-DP and CSC-DP in this
analysis. It is evident that the CST-DP+ model exhibits the
highest density, as it utilizes stars for truss clustering, resulting

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

in a higher degree of aggregation by definition. Generally, truss
models tend to have higher density compared to core models.
However, CSC-DP+ shows higher density than Ktruss in some
datasets (for example, the Nasasrb and Pkustk datasets). It
indicates that higher-order models typically demonstrate greater
density than traditional models. Overall, these results confirm
that our proposed colorful star-based higher-order clustering
models are indeed more effective.

C. Results of the H-CLIQUE-DS-PROBLEM

In this subsection, we carry out a set of experiments to evaluate
the performance of 8 different algorithms for solving the H-
CLIQUE-DS-PROBLEM.

Exp-5: Running time of different algorithms for H-CLIQUE-
DS-PROBLEM . Fig. 12 shows the running time achieved by
the eight competing algorithms as h varies from 3 to 9 across
the larger eight datasets. We observe the following results:
(i) As expected, the running time of all eight approximation
algorithms increases as h increases. This is because the number
of h-cliques grows as h increases. We can clearly see that
both the colorful h-star core-based algorithm (h-CDS) and the
heuristic approach (h-CDS+) are significantly faster than the
other competitors, with Exact taking the longest time on almost
all datasets. There is one exception with DBLP, where the
SeqSampl28 algorithm, after 128 iterations, takes more time
for smaller k values compared to the exact algorithm (which,
to be fair, also uses a powerful pruning method and is not
so naive). This shows that, in extreme cases, when sampling
algorithms use too many iterations, they can consume more
time than exact algorithms. (ii) h-CDS+ outperforms h-CDS
on the majority of datasets. h-CDS+ is slightly faster than all
other algorithms (especially on LDoor and Orkut), but a little
slower than h-CDS on LiveJournal with A = 3,4. The reason
is that h-CDS+ needs to compute the entire colorful h-star core
decomposition, so for smaller h values, h-CDS may be slightly
faster. On LDoor, CoreApp is already very fast for a small £,
so in this case, it cannot be significantly accelerated by our
algorithms. (iii) Among the compared state-of-the-art methods,
the latest KCCA is the best, but our h-CDS+ algorithm outper-
forms KCCA across all datasets. When comparing SeqSamp,
SCTL, and KCCA after just one iteration, their performance
is similar most of the time, though KCCA tends to be more
efficient. Despite the high efficiency of KCCA after one iteration,
h-CDS+ outperforms KCCA across all datasets. This is because
our algorithm only requires linear time to compute the color-
ful core, validating our theoretical analysis. Besides, on some
datasets, SeqSamp, SeqSamp128 and Exact fail to terminate
within 24 hours for large h values. The reason could be that the
sampling based algorithms involve a time-consuming procedure
which runs a clique-counting subroutine twice to first count the
number of h-cliques and then sample the h-cliques to be stored
into memory. The exact solution runs a more time-consuming
max-flow algorithm, thus they can not deal with large h values.
These results confirm that the proposed technique is very effec-
tive in speeding up the approximate h-clique densest subgraph
computation.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

1119

CoreApp @ SeqSamp —A— CoreApp @ SeqSamp —A- CoreApp @ SeqSamp —A— CoreApp @ SeqSamp —A-
h-CDS ~#SeqSampl28 ~¥— h-CDS -®SeqSampl28 -¥- h-CDS ~®SeqSampl28 ~¥— h-CDS -®SeqSampl28 -¥-
h-CDS+ - SCTL h-CDS+ - SCTL h-CDS+ —#- SCTL h-CDS+ - SCTL
Exact < KCCA @& Exact > KCca 100K Exact < KCCA -@- Exact > KCCA @
~100K ~ INF ~ ~ INF
3 X BN 8 100K g 10K S 100K
2 10K \ 4;% 2 3 2
by = & 3 IK > 10K
E X £ IK E E
E 100 =100 =) 100 [1K
10 10 10 100
1 10
1 0.1 1 .
3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
(a) Pwtk (vary h) (b) DBLP (vary h) (¢) MsDoor (vary h) (d) Digg (vary h)
CoreApp @ SeqSamp —&— CoreApp @ SegSamp & CoreApp @ SegSamp —& CoreApp @ SegSamp —4&—
h-CDS ~®SegSampl28 ¥ h-CDS #®SeqSampl28 -w h-CDS -#SegSampl28 -¥- h-CDS ~®SeqSampl28 ¥
h-CDS+ —#- SCTL h-CDS+ - SCTL eI X7 P h-CDS+ —#— SCTL
Exact % KCCA & Exact ¢ KcCA & xac Exact ¢ KCCA @
~ INF ~ INF ~ INF ¢
3) / 5 B
2100k S0k B100K
g I(I)E g 10K g 10K
& 100 ok E K
10 100 100
1 10
10
3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
(e) LDoor (vary h) (f) Skitter (vary h) (g) Orkut (vary h) (h) LiveJournal (vary h)
Fig. 12. Running time of different algorithms for H-CLIQUE-DS-PROBLEM with varying h from 3 to 9.
CoreApp —@SeqgSampl28 —¥— CoreApp —@SeqSampl28 —¥— CoreApp —@SeqSampl28 —¥— CoreApp —@SegSampl28 —¥—
10% h-CDS - SCTL 100% h-CDS —#- SCTL 100% h-CDS - SCTL h-CDS ~#— SCTL
° h-CDS+ —— KCCA & h-CDS+ —#— KCCA & © h-CDS+ —#— KCcCA ©- h-CDS+ —— Kcea @&
SeqgSamp —A&— SeqSamp —A— SeqSamp —A— 100% | SeqSamp —&—
10%
10%
Mg | A A —4) = m 10%
T ER A R =~
v ,,\ _ 1% A
v —
0.1% 0.1% 0.1% S =
0.1% R
v
001% t ¥—e v 0.01% 0.01%
3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
(a) Pwtk (vary h) (b) DBLP (vary h) (c) MsDoor (vary h) (d) Digg (vary h)
CoreApp —@SeqgSampl28 —w— CoreApp @SegSampl28 —w— CoreApp @SeqSampl28 —w— CoreApp —@SeqSampl28 —w—
100% h-CDS @ SCTL h-CDS SCTL h-CDS - SCTL h-CDS SCTL
h-CDS+ —4— KCCA & h-CDS+ —9— KCCA & h-CDS+ —— KCCA -&- h-CDS+ —4— KCCA -&-
SeqgSamp —&— 100% | seqgSamp —&— 100% SegSamp —&— SegSamp —&—
10%
2 10% i 10% Bio% e, Jo o 0 — o
1% 1% < 01% e
0.1% 0.1%
1%
0.01% 0.01% 0001% | T==g
3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
(e) LDoor (vary h) (f) Skitter (vary h) (g) Orkut (vary h) (h) LiveJournal (vary h)
Fig. 13. Relative error (RE) of different algorithms with varying A from 3 to 9 (Points are missing where Exact runs out of 24 hours.).

Exp-6: Approximation performance. We use the relative error
(RE) as a metric to evaluate the approximation performance of
different algorithms which is defined as |0}, — o3,|/07,, where o7,
is the h-clique density of the h-clique densest subgraph obtained
by Exact and oy, is an estimated value. To compute the relative
error, we run each approximation algorithm 100 times and then
take the average value over the 100 runs as the final result.

Fig. 13 shows the relative errors of various algorithms on
the larger eight datasets. Some points are missing on large h
values where the exact algorithm cannot get a solution with 24
hours. Note that CoreApp and h-CDS achieve the same relative
error because they both return the CC’,}C as an approximation. We
can see that the compared algorithms, SeqSamp, SeqSamp128,
KCCA, and SCTL, all achieve good approximations for the
h-clique densest subgraph, as these algorithms generally require

counting the number of cliques. However, in terms of density,
our proposed algorithms, h-CDS and h-CDS+, also show strong
performance in terms of error rates. Although they may not
always lead in relative comparisons, when considering abso-
lute values, across all datasets, the relative error (RE) of our
proposed algorithms is consistently below 10%. Coupled with
the running time data from Exp-4, this demonstrates that the
colorful h-star core-based algorithms, h-CDS and h-CDS+, pro-
duce high-quality results using significantly less time. Among
all datasets, SeqSamp128 yields the best error performance,
which is expected given that this algorithm undergoes 128
iterations, while SeqSamp, KCCA, and SCTL only use one
iteration. This highlights that sample-based algorithms benefit
from increased iterations, leading to better outcomes. However,
although SeqSamp128 can achieve a lower relative error, it is

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025
TABLE III
THE POWER OF PRUNING TECHNIQUES USED IN h-CDS (h = 6, 1K=1,000, IM=1,000,000, 1G=1,000,000,000)
Dataset n=1V] m = |E| #Density=m/n A o6 6-clique density
G csch cch, G CSsch cch, G CSCh CCL. CSCh G Csch CCL.
Nasasrb 549K 52.1K 1.6K 1.3M 1.3M 284K | 2390 24.13 17.50 5.13% 12.36K 12.99K 11.14K
Pkustk 87.8K 413K 396 2.6M 1.4M 9.1K | 29.21 32.75 23.05 | 53.01% | 25.90K 29.71K 95.19K
Buzznet 101K 33.8K 275 2.8M 22M 21.5K | 27.31 65.04 78.23 | 66.63% | 63.68K 191K 4.17M
DBLP 317K 114 114 1.0M 6.4K 6.4K 3.31 56.50 56.50 | 99.96% | 13.31K 23.39M 23.39M
Digg 771K 234K 153 5.9M 2.9M 9.5K 7.66 12526 62.29 | 96.96% | 20.01K 658K 10.25M
Skitter 1.7M 3.0K 180 11.IM 222K 119K | 6.55 73.87 66.24 | 99.82% | 5.76K 2.66M 9.53M
Orkut 3.0M 693K 132 106M 504M 7.5K | 3548 72.70 56.77 | 76.87% | 15.75K 64.80K 7.57TM
LiveJournal | 4.8M 483 385 | 429M 108K 73.7K | 8.84 22441 19131 | 99.99% | 1.70M 16.86G 10.72G
100K fprunTime —&— INF [prunTime A 100K h=g e 100K h=g o
D ok | TR 3 N < e 5 10K = 5 10K i
Zz Z 100K = 1K = 1K
o o (=} (=]
E K E KK £ 100 Z 100
= S] 4 A A a4 10 i 10
100 ¥ 2 4 4 4 s a o L — 1
3 4 5 6 7 8 9 3 4 5 6 7 8 9 1 100 10K 1M 100M 1 100 10K 1M 100M
h h Colorful h-star Core Colorful h-star Core
(a) Orkut (b) LiveJournal (a) Degree (b) Degen
Fig. 14. The running time distribution of h-CDS. 100K hls e 100K PR
" 10K h=6 . . 10K h=6 3
s K 2 K
. . . £ 100 Z 100
very costly and cannot provide an approximation for larger h " 10
values, such as h = 6 on LiveJournal and h = 9 on Skitter and 1 - 1
1 100 10K 1M 100M 1 100 10K IM 100M
Orkut, Colorful h-star Core Colorful h-star Core
E . (¢) FF (d) sb
xp-7: The performance of h-CDS. Here we evaluate h-CDS
interms of the running time distribution and the &r aph size reduc- Fig. 15. Nodes’ distributions of colorful A -star cores based on different graph

tion for h = 6 on Orkut and LiveJournal. Recall that h-CDS first
prunes the graph using the colorful h-star §-core CSCZ, and then
calls CoreApp to compute the h-clique c¢c-core CCZO to achieve
a %-approximation solution. The runtime of h-CDS includes the

pruning time and the time spent on computing CCZC, denoted
by PrunTime and CompTime respectively. Fig. 14 shows the
time distribution of h-CDS on different datasets. As can be seen,
PrunTime is stable with an increasing h from 3 to 9 on all
graphs, while CompTime increases significantly as h increases.
For a small h, PrunTime and CompTime are comparable, while
for a large h, PrunTime is dominated by CompTime. These
results indicate that the cost of h-CDS is mainly dominated by
computing CCZC, and the pruning procedure is very efficient.
Table IIT shows the statistics of G, CSCh and CC" . In Ta-
ble I, A = (ny —n2)/ny and og is 6-clique density where
ny = Vgl na = |VCSC§L| which can be used to measure the ef-
fectiveness of the pruning rule in h-CDS. From Table III, we can
see that our pruning strategy is very effective; it can largely prune
the nodes that are definitely not contained in CSC/, especially
on LiveJournal, DBLP, Skitter and Digg where A can achieve
nearly 99.99%. Taking the LiveJournal dataset as an example,
after removing a large number of nodes from the original graph
(|V| = 4,847,572), our pruning technique returns CSC; with
only 483 nodes, which is quite close to the target subgraph
CCh (385 nodes). In addition, CSC} also improves the density
over the original graph by up to 17 times (DBLP, Digg and
LiveJournal). On all datasets except Buzznet and DBLP, the
densities of C’g are higher than those of CCZC, suggesting that
our colorful h-star core is indeed very cohesive. Also, we can

see that CSCJ! can significantly increase the clique density. On

colorings (Skitter).

LiveJournal and Nasasrb, CSCZ even achieves a higher clique
density than CC". . These results indicate that the colorful A-star
core can provide a very good approximation for the h-clique
densest subgraph.

D. The Effects of Graph Colorings

In this subsection, we study how graph colorings impact
the performance of the colorful A-star core decomposition and
qualities of the colorful h-star maximal core. Among all graph
coloring techniques, greedy coloring algorithms using node-
ordering heuristics to reduce the number of colors, turn out to
be the most efficient algorithms. Here are four popular ordering
heuristics studied in the recent literature [12]:
® Degree: Coloring the nodes following a non-increasing
ordering of degree (break ties by node ID) [30].

® Degen: Coloring the nodes following an inverse degen-
eracy ordering [12]. Note that such an inverse degen-
eracy ordering can be easily obtained by reversing the
node-deletion ordering of the core-decomposition algo-
rithm [23].

e FF: Coloring the nodes in the order they appear in the input
graph representation [30].

® SD: Coloring an uncolored node whose colored neighbor
nodes use the largest number of distinct colors [31].

Exp-8: The nodes’ distribution. Fig. 15 shows the nodes’
distribution of various colorful h-star k-cores on Skitter for

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

TABLE IV
PERFORMANCE OF DIFFERENT COLOR ALGORITHMS (DATASET: Skitter, H IS
THE COLORFUL 6-STAR c5c-CORE)

[n=1[Va] m=[Eul [x [oe(H)
Degree 212 15,503 71 10.27M
Degen 213 15,609 75 10.28M
FF 233 15,145 101 | 10.08M
SD 213 15,600 68 10.31M
100K . (k-core) h=2 100K . ~ (k-core) h=2 o
W 10K (Triangle-core) Zzé;’ : W 10K ‘,/ (Triangle-core) Z;g :
2 K T K
£ 100 £ 100
10 10
! 1 100 10K 1M 100M ! 1 100 10K 1M 100M
h~clique Core h-clique Core
(a) Skitter (b) Orkut
Fig. 16. Nodes’ distributions of h-clique cores.

h = 3 and 6 when using different coloring algorithms. Note that,
both x-axis and y-axis are in log scale. Thus, the distribution
of colorful h-star core numbers generally follows a power-law
distribution when h = 3. As can be seen in Fig. 15, most nodes
have smaller colorful h-star degree and the maximum colorful
h-star core number gets larger with varying h from 3 to 6.
The nodes’ distributions are very similar in the settings of four
different coloring algorithms. A slight difference is that nodes
in Fig. 15(c) are more scattered. A possible reason is that the
FF heuristic uses the larger number of colors to color nodes (see
Table IV), which makes a h-star more likely to be colorful
and each node participates in more colorful h-stars. In our
experiments, we set Degree as the default coloring algorithm
for h-CDS and h-CDS+, because Degree runs very faster than
Degen (it needs to compute k-core decomposition) and SD (it
picks an uncolored node dynamically).

Fig. 16 shows the nodes’ distribution of different h-clique
k-cores on Skitter and Orkut for h = 2, 3 and 6. Again,
the distribution of h-clique core number follows a power-law
distribution, thus most of nodes participate in less h-cliques and
are contained in a h-clique core with smaller core number. In
addition, we can also observe that 3-clique cores (see Fig. 16(a))
and colorful 3-star cores (see Fig. 15(a)) have the similar nodes’
distribution. However, the distributions for h = 6 show slightly
different situations: there are more nodes with small 6-clique
core number compared to nodes with small colorful 6-star core
number in Fig. 15. Even so, the two kinds of distributions share
the same trend when h values get larger. Therefore, our colorful
h-star core model can still be seen as a good approximation of
h -clique core.

Exp-9: The qualities of h-CDS+ with different graph col-
orings. Fig. 17 shows the performance of h-CDS+ in terms
of the time consumption and relative errors on Skitter. In
Fig. 17(a), DecomTime and CompTime indicate the time cost on
the colorful h-star core decomposition and computing h-clique
density of the colorful h-star csc-core whose statistics are shown
in Table IV. As can be seen, SD consumes more time than the
other three coloring techniques. This is because Degree, Degen

1121

30%

DecomTime s

_ CompTime Degree —&— FF —o—
2 Degen —&— SD —a—
)
£ 20% S
= o——e——& &
4 3 4 5 6
Degree Degen FF SD h

(a) Running Time (h = 3, 6)

(b) Relative Error

Fig. 17. The qualities of h-CDS+ with different graph colorings.

Yexii

jang
Chistod Faloutsos,Cha@Shen” - ChungiyZeng ChaéShen
et cnis ﬂ 0 € N
LiZieng Li Zheng LEilLi
Horigaii
Liang Tang TaolLi
Hongtai Li YexiJiang

Chungil Zeng

(b) colorful 3-star k-core

(a) k-core

(c) 3-clique densest subgraph

Fig. 18. The cohesive subgraphs found in DBLP, based on k-core, colorful
3-star k-core and 3-clique densest subgraph.

and FF color nodes following a fixed order, but SD selects an
uncolored node dynamically based on the number of distinct
colors of their neighbors, which can be very costly though it
produces higher quality colorings (using smaller number of
colors in Table IV). For a large h value, CompTime increases
significantly since computing h-clique density involves counting
the number of h-cliques which runs very slow. In Fig. 17(b), we
can see that h-CDS+ equipped with FF has a larger relative error.
The results suggest that the estimating precision of h-CDS+
seems to match the number of colors used in greedy coloring
algorithms shown in Table IV, and the reason might be that
when less colors are used in coloring algorithms, a colorful h-star
has the high probability to be a h-clique, thus it can be a good
approximation of a clique.

E. Case Studies

Exp-10: We extract a subgraph, namely DBLPs, from DBLP
for case studies. DBLPs, containing 3,545 nodes and 5,076
edges, is a collaboration network of authors who published at
least two papers in the database (DB) and data mining (DM)
related conferences between 2010 and 2020. Here we perform
three queries for a given author’s name (in this case study, “Lei
Li” is used as an illustrative example) to compute the k-core,
the colorful 3-star core and the 3-clique densest subgraph that
contain this author on DBLPs (Fig. 18), respectively. As depicted
in Fig. 18(a), Dr. Lei Li is located in a 4-core. In this subgraph,
every author collaborated with at least four researchers over the
period of ten years. The result for the colorful 3-star k-core is
quite different from the result of k-core (Fig. 18(b)), and itis also
more compact and cohesive than k-core. The authors marked
by red (i.e., Dr. Lei Li, Hanghang Tong and Wei Fan) are group
leaders or senior researchers. They basically act as the “bridges”
connecting their group with others, which play an important role
in joint work with other authors. The triangle densest subgraph
that contains Dr. Lei Li shown in Fig. 18(c) exhibits a different

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1122

semantic. The result turns out to be a clique, which is also a
subgraph of the colorful 3-star k-core. Researchers involved in
this clique closely collaborated with each other. However, such
a clique structure cannot reveal the collaboration relationships
with the other groups. Thus, compared to the k-core and the
h-clique densest subgraph, our colorful h-star core will be better
to reveal the close collaboration between different research
groups.

VI. RELATED WORK

Cohesive subgraph models: A large number of cohesive
subgraph models have been proposed based on different cohe-
siveness measures [32]. Notable examples include k-core [19],
k-truss [20], maximal k-edge connected subgraph [21], and
maximal cliques [33], [34], [35]. k-core is a maximal subgraph
among all subgraphs in G, in which the degree of each node is
at least k [23], [36]. Recently, such a concept was extended to
uncertain graph [37], [38], attributed graphs [39], [40], distance
generalized cores [41], [42], [43] and so on [44], [45], [46],
[47], [48]. A k-truss is a maximal subgraph where each edge
participates in at least k£ — 2 triangles [20], [49], [50], [51], [52],
[53], [54]. A maximal k-edge connected subgraph is a maximal
subgraph such that any two nodes in that subgraph have at least
k edge disjoint paths connecting them [21], [55], [56]. All the
k-core, k-truss, and maximal k-edge connected subgraph can
be computed in polynomial time by a peeling-style algorithm.
A maximal clique is a maximal complete subgraph. Finding
all maximal cliques in a graph is a classic NP-hard problem.
Practical algorithms for maximal clique enumeration are often
based on the classic Bron-Kerbosch algorithm [22]. The concept
of maximal clique was also extended to the context of uncertain
graphs [57], [58]. In addition, there also exist some other cohe-
sive subgraph models including query-biased density [59], [60],
k-clique cores [14], and k-(r, s) nucleus [61], [62], [63], [64]
(a generalization of k-core and k-truss). Different from all the
above models, our colorful h-star core model can be considered
as a relaxation of the k-clique core model. Moreover, unlike the
k-clique core, our model can be computed in near-linear time.

The densest subgraph problem: The dense subgraphs problem
has been widely studied [65], [66], [67]. Given a pattern (also
called motif), such a problem is to extract a subgraph which max-
imizes the pattern density, i.e., the average number of patterns on
nodes. The most commonly studied density is average degree,
defined as 7. Finding a subgraph that maximizes the average
degree was referred to as the densest subgraph problem, which
can be solved using a parametric maximum-flow algorithm in
polynomial time [65], [68]. Epasto et al. studied the densest sub-
graph computation in evolving graphs [66]. Qin et al. proposed
an algorithm to find the top-% locally densest subgraphs [69]. The
concept of h-clique densest subgraph (H-CLIQUE-DS) was first
introduced by Tsourakakis [15] by extending the concept of the
densest subgraph (DS) and the triangle densest subgraph (TDS),
which are special cases for h = 2 and i = 3 respectively [15],
[67]. The h-clique densest subgraph problem (H-CLIQUE-DS-
PROBLEM) aims to find H-CLIQUE-DS among all subgraphs of
G. Tsourakakis et al. generalized the greedy %—approximation

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

algorithm to a %-approximation algorithm for H-CLIQUE-DS-
PROBLEM. Raman et al. [16] investigated a higher-order variant
of locally dense subgraph [69] based on triangle, called top-k
local triangle-densest subgraph discovery. Mitzenmacher et al.
proposed a randomized algorithm to identify an h-clique dense
subgraph [67]. Later in [14], the authors developed an approxi-
mation solution based on the h-clique core. Recently, Sun et al.
introduced an alternative approach by sampling h-cliques to save
space [17]. He et al. [26] propose SCTL, which builds an index
structure to expedite the k-clique enumeration process, and then
compute the h-clique densest subgraph. Fang et al. [27] propose
a SOTA approach of h-clique densest subgraph problem by em-
ploying a effective Frank-Wolfe-based framework that utilizes
k-clique counting instead of k-clique enumeration. Besides,
there are a lot of research on densest subgraph recently [70],
[711,172],173],[74],[75],[76],[77], [78]. In this manuscript, we
propose a new graph reduction technique based on our colourful
h-star core which is dramatically different from all the previous
algorithms.

The colorful motif and star counting: For the colorful motif,
research has focused on colorful cycles [10], [79], colorful
paths [80], [81], and colorful independent sets [82]. The studies
most relevant to our work include the following: Rubert et
al. [83], [84] present SIMBio, a tool designed for inferring and
searching colorful motifs in biological networks, which demon-
strates improved performance over existing tools like MOTUS
and Torque in identifying relevant motifs and biological patterns.
Italiano et al. [85] investigate the NP-hard problem of finding
a maximum colorful clique in vertex-colored graphs, providing
complexity results and developing efficient algorithms for spe-
cific graph classes, including XP parameterized and polynomial-
time solutions. Additionally, there has been considerable recent
work on star counting [86], [87], [88], [89]. Notably, Finocchi et
al. [89] introduce efficient sequential and parallel algorithms for
listing and counting k-diamonds, which are relaxed cliques with
one missing edge, showcasing optimal performance in dense
graphs and improved runtime over k-clique algorithms for sparse
graphs. Meanwhile, Yu et al. [87] establish that counting O(1)-
stars is the optimal method among constant degree polynomial
tests for strongly distinguishing a graph instance G(n, p) from
the union of a random copy of graph [with another instance of
G(n, p), thus generalizing and extending previous results on the
inference capabilities of O(1)-degree polynomials. However, we
are the first to systematically analyze the definition, algorithms,
and applications of colorful h-stars.

VII. CONCLUSION

In this manuscript, we present the novel concept of the colorful
h-star within colorful graphs and propose two sophisticated
models for cohesive subgraphs: the colorful h-star core and the
colorful h-star truss. We illustrate that these colorful h-stars
can be efficiently enumerated and updated using an innovative
dynamic programming (DP) algorithm. Building upon this DP
algorithm, we have devised a decomposition algorithm for the
colorful h-star core with a time complexity of O(hm) and a
space complexity of O(hn + m). Furthermore, we introduce a

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

decomposition algorithm for the colorful A-star truss, character-
ized by a time complexity of O(hm*®) and a space complexity
of O(hm), where m is the number of edges and n is the number
of nodes in the graph. Based on our proposed model, we propose
a graph reduction technique to speed up an approximate k-clique
densest subgraph mining algorithm. Moreover, we show that the
colorful h-star core with the maximum core number is also a
very good approximation of the k-clique densest subgraph. We
conduct extensive experiments on 11 large real-world graphs,
and the results demonstrate the efficiency, scalability and effec-
tiveness of the proposed solutions.

[1]

[2]

[3]

[4]

[5]

[6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparicio, and F. M. A. Silva,
“A survey on subgraph counting: Concepts, algorithms, and applications
to network motifs and graphlets,” ACM Comput. Surv., vol. 54, no. 2,
pp. 28:1-28:36, 2022.

Z. Gao, C. Cheng, Y. Yu, L. Cao, C. Huang, and J. Dong, “Scalable motif
counting for large-scale temporal graphs,” in Proc. IEEE Int. Conf. Data
Eng., 2022, pp. 2656-2668.

M. Bressan, S. Leucci, and A. Panconesi, “Faster motif counting via
succinct color coding and adaptive sampling,” ACM Trans. Knowl. Discov.
Data, vol. 15, no. 6, pp. 96:1-96:27, 2021.

J. Wang, Y. Wang, W. Jiang, Y. Li, and K. Tan, “Efficient sampling
algorithms for approximate temporal motif counting,” in Proc. ACM Int.
Conf. Inf. Knowl. Manage., 2020, pp. 1505-1514.

H. Peng, J. Li, Q. Gong, Y. Ning, S. Wang, and L. He, “Motif-matching
based subgraph-level attentional convolutional network for graph classifi-
cation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 5387-5394.
L.P.Nguyen,J. Mille, D. H. Li, D. Conte, and N. Ragot, “Efficient dynamic
texture classification with probabilistic motifs,” in Proc. Int. Conf. Pattern
Recognit., 2022, pp. 564-570.

F. Xia, S. Yu, C. Liu, J. Li, and I. Lee, “CHIEF: Clustering with higher-
order motifs in big networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 3,
pp. 990-1005, May/Jun. 2022.

P. Li, G. J. Puleo, and O. Milenkovic, “Motif and hypergraph correlation
clustering,” IEEE Trans. Inf. Theory, vol. 66, no. 5, pp. 3065-3078,
May 2020.

P. Aboulker, M. Bonamy, N. Bousquet, and L. Esperet, “Distributed
coloring in sparse graphs with fewer colors,” in Proc. ACM Symp. Princ.
Distrib. Comput., 2018, pp. 419-425.

D. Chakraborti, A. M. Frieze, and M. Hasabnis, “Colorful hamilton cycles
in random graphs,” SIAM J. Discret. Math., vol. 37, no. 1, pp. 51-64,
2023.

Z. Zhang and J. Guo, “Colorful graph coloring,” in Proc. Int. Workshop
Front. Algorithmics, 2022, pp. 141-161.

'W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in Proc. ACM Symp. Parallelism
Algorithms Architectures, 2014, pp. 166-177.

L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Effective and effi-
cient dynamic graph coloring,” Proc. VLDB Endowment, vol. 11, no. 3,
pp. 338-351, 2017.

Y. Fang, K. Yu, R. Cheng, L. V. Lakshmanan, and X. Lin, “Efficient
algorithms for densest subgraph discovery,” Proc. VLDB Endowment,
vol. 12, no. 11, pp. 1719-1732, 2019.

C. E. Tsourakakis, “The k-clique densest subgraph problem,” in Proc. Int.
Conf. World Wide Web, 2015, pp. 1122-1132.

R. Samusevich, M. Danisch, and M. Sozio, “Local triangle-densest sub-
graphs,” in Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Mining, 2016,
pp. 33-40.

B. Sun, M. Danisch, T. H. Chan, and M. Sozio, “KClist: A simple algorithm
for finding k-clique densest subgraphs in large graphs,” Proc. VLDB
Endowment, vol. 13, no. 10, pp. 1628-1640, 2020.

B. Balasundaram and S. Butenko, “Graph domination, coloring and cliques
in telecommunications,” in Handbook of Optimization in Telecommunica-
tions, Berlin, Germany: Springer, 2006, pp. 865-890.

S. B. Seidman, “Network structure and minimum degree,” Social Netw.,
vol. 5, no. 3, pp. 269-287, 1983.

J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proc.
VLDB Endowment, vol. 5, no. 9, pp. 812-823, 2012.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

1123

R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
maximal k-edge-connected subgraphs from a large graph,” in Proc. Int.
Conf. Extending Database Technol., 2012, pp. 480—-491.

D. Eppstein, M. Loffler, and D. Strash, “Listing all maximal cliques in
large sparse real-world graphs,” ACM J. Exp. Algorithmics, vol. 18,2013,
Art. no. 3.1.

V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decomposi-
tion of networks,” 2003, arXiv:0310049.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Second Edition. Cambridge, MA, USA: The MIT Press and
McGraw-Hill Book Company, 2001.

M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1/3, pp. 458-473,
2008.

Y. He, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Scaling up K-clique
densest subgraph detection,” Proc. ACM Manag. Data, vol. 1, no. 1,
pp. 69:1-69:26, 2023.

Y. Zhou, Q. Guo, Y. Fang, and C. Ma, “A counting-based approach for
efficient K-clique densest subgraph discovery,” Proc. ACM Manag. Data,
vol. 2, no. 3, 2024, Art. no. 119.

R. A. Rossi, D. E. Gleich, and A. H. Gebremedhin, ‘“Parallel maximum
clique algorithms with applications to network analysis,” SIAM J. Sci.
Comput., vol. 37, no. 5, pp. C589-C616, 2015.

V. Batagelj and M. Zaversnik, “Fast algorithms for determining (gener-
alized) core groups in social networks,” Adv. Data Anal. Classification,
vol. 5, no. 2, pp. 129-145, 2011.

D. J. Welsh and M. B. Powell, “An upper bound for the chromatic number
of a graph and its application to timetabling problems,” Comput. J., vol. 10,
no. 1, pp. 85-86, 1967.

D. Brélaz, “New methods to color the vertices of a graph,” Commun. ACM,
vol. 22, no. 4, pp. 251-256, 1979.

L. Chang and L. Qin, “Cohesive subgraph computation over large sparse
graphs,” in Proc. IEEE Int. Conf. Data Eng., 2019, pp. 2068-2071.

T. Yu et al., “Incremental maximal clique enumeration for hybrid edge
changes in large dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 36,
no. 4, pp. 1650-1666, Apr. 2024.

D. Yu, L. Zhang, Q. Luo, X. Cheng, and Z. Cai, “Maximal clique search
in weighted graphs,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9,
pp- 9421-9432, Sep. 2023.

K. Yu and C. Long, “Fast maximal quasi-clique enumeration: A pruning
and branching co-design approach,” Proc. ACM Manag. Data, vol. 1,no. 3,
pp. 211:1-211:26, 2023.

R.-H. Li, J. Yu, and R. Mao, “Efficient core maintenance in large dynamic
graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp. 2453-2465,
Oct. 2014.

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core decom-
position of uncertain graphs,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2014, pp. 1316-1325.

B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R. Li, “Index-based
optimal algorithm for computing k-cores in large uncertain graphs,” in
Proc. IEEE Int. Conf. Data Eng., 2019, pp. 64-75.

R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
large networks,” Proc. VLDB Endowment, vol. 8, no. 5, pp. 509-520,
2015.

R. Lietal., “Skyline community search in multi-valued networks,” in Proc.
Int. Conf. Manage. Data, 2018, pp. 457-472.

F. Bonchi, A. Khan, and L. Severini, “Distance-generalized core decom-
position,” in Proc. Int. Conf. Manage. Data, 2019, pp. 1006-1023.

Q. Dai et al., “Scaling up distance-generalized core decomposition,” in
Proc. ACM Int. Conf. Inf. Knowl. Manage., 2021, pp. 312-321.

Q. Liu, X. Zhu, X. Huang, and J. Xu, “Local algorithms for distance-
generalized core decomposition over large dynamic graphs,” Proc. VLDB
Endowment, vol. 14, no. 9, pp. 1531-1543, 2021.

W.Bai, Y. Jiang, Y. Tang, and Y. Li, “Parallel core maintenance of dynamic
graphs,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 8919-8933,
Sep. 2023.

J. Liu, C. Xu, C. Yin, W. Wu, and Y. Song, “K-core based temporal graph
convolutional network for dynamic graphs,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 8, pp. 3841-3853, Aug. 2022.

L. Sun, X. Huang, R. Li, B. Choi, and J. Xu, “Index-based intimate-core
community search in large weighted graphs,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 9, pp. 43134327, Sep. 2022.

X. Liao, Q. Liu, J. Jiang, X. Huang, J. Xu, and B. Choi, “Distributed d-
core decomposition over large directed graphs,” Proc. VLDB Endowment,
vol. 15, no. 8, pp. 1546-1558, 2022.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

1124

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

X. Sun, X. Huang, and D. Jin, “Fast algorithms for core maximization on
large graphs,” Proc. VLDB Endowment, vol. 15, no. 7, pp. 1350-1362,
2022.

X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in Proc. Int. Conf. Manage.
Data, 2014, pp. 1311-1322.

X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate
closest community search in networks,” Proc. VLDB Endowment, vol. 9,
no. 4, pp. 276-287, 2015.

Z. Sun, X. Huang, Q. Liu, and J. Xu, “Efficient star-based truss main-
tenance on dynamic graphs,” Proc. ACM Manag. Data, vol. 1, no. 2,
pp. 133:1-133:26, 2023.

A. Tian, A. Zhou, Y. Wang, and L. Chen, “Maximal d-truss search
in dynamic directed graphs,” Proc. VLDB Endowment, vol. 16, no. 9,
pp. 2199-2211, 2023.

Q. Luo, D. Yu, X. Cheng, H. Sheng, and W. Lyu, “Exploring truss
maintenance in fully dynamic graphs: A mixed structure-based approach,”
IEEE Trans. Comput., vol. 72, no. 3, pp. 707718, Mar. 2023.

Z.Chen, L. Yuan, L. Han, and Z. Qian, “Higher-order truss decomposition
in graphs,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3966-3978,
Apr. 2023.

T. Akiba, Y. Iwata, and Y. Yoshida, “Linear-time enumeration of maximal
k-edge-connected subgraphs in large networks by random contraction,” in
Proc. ACM Int. Conf. Inf. Knowl. Manage., 2013, pp. 909-918.

L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang, “Efficiently
computing k-edge connected components via graph decomposition,” in
Proc. Int. Conf. Manage. Data, 2013, pp. 205-216.

A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques
from an uncertain graph,” in Proc. IEEE Int. Conf. Data Eng., 2015,
pp. 243-254.

R. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in Proc.
IEEE Int. Conf. Data Eng., 2019, pp. 1178-1189.

C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli,
“Denser than the densest subgraph: Extracting optimal quasi-cliques with
quality guarantees,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2013, pp. 104-112.

J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-
clique detection,” in Proc. Latin Amer. Symp. Theor. Inform., 2002,
pp- 598-612.

A. E. Sariyiice, C. Seshadhri, A. Pinar, and U. V. Catalyiirek, “Finding the
hierarchy of dense subgraphs using nucleus decompositions,” in Proc. Int.
Conf. World Wide Web, 2015, pp. 927-937.

A. E. Sariyuce and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” Proc. VLDB Endowment, vol. 10, no. 3, pp. 97-108, 2016.
A. E. Sariyiice, C. Seshadhri, A. Pinar, and U. V. Catalytirek, “Nucleus
decompositions for identifying hierarchy of dense subgraphs,” ACM Trans.
Web, vol. 11, no. 3, pp. 16:1-16:27, 2017.

A. E. Sariyuce, C. Seshadhri, and A. Pinar, “Local algorithms for hierar-
chical dense subgraph discovery,” Proc. VLDB Endowment, vol. 12, no. 1,
pp. 43-56, 2018.

A. V. Goldberg, Finding a Maximum Density Subgraph. Berkeley, CA,
USA: Univ. California Berkeley, 1984.

A. Epasto, S. Lattanzi, and M. Sozio, “Efficient densest subgraph com-
putation in evolving graphs,” in Proc. Int. Conf. World Wide Web, 2015,
pp. 300-310.

M. Mitzenmacher, J. Pachocki, R. Peng, C. E. Tsourakakis, and S. C.
Xu, “Scalable large near-clique detection in large-scale networks via
sampling,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2015, pp. 815-824.

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric maxi-
mum flow algorithm and applications,” STAM J. Comput., vol. 18, no. 1,
pp. 30-55, 1989.

L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph dis-
covery,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2015, pp. 965-974.

C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, X. Han, and X. Li, “Ac-
celerating directed densest subgraph queries with software and hardware
approaches,” VLDB J., vol. 33, no. 1, pp. 207-230, 2024.

D. Chugh, H. Mittal, A. Saxena, R. Chauhan, E. Yafi, and M. Prasad,
“Augmentation of densest subgraph finding unsupervised feature selection
using shared nearest neighbor clustering,” Algorithms, vol. 16, no. 1, p. 28,
2023. [Online]. Available: www.mdpi.com/about/announcements/784

T. Hanaka, “Computing densest K-subgraph with structural parameters,”
J. Comb. Optim., vol. 45, no. 1, 2023, Art. no. 39.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Y. Xu, C. Ma, Y. Fang, and Z. Bao, “Efficient and effective algorithms for
generalized densest subgraph discovery,” Proc. ACM Manag. Data, vol. 1,
no. 2, pp. 169:1-169:27, 2023.

L. Chen, C. Liu, R. Zhou, K. Liao, J. Xu, and J. Li, “Densest multipartite
subgraph search in heterogeneous information networks,” Proc. VLDB
Endowment, vol. 17, no. 4, pp. 699-711, 2023.

J. Ding and H. Du, “Detection threshold for correlated erds-rényi
graphs via densest subgraph,” IEEE Trans. Inf. Theory, vol. 69, no. 8,
pp. 5289-5298, Aug. 2023.

A.Saha, X. Ke, A. Khan, and C. Long, “Most probable densest subgraphs,”
in Proc. IEEE Int. Conf. Data Eng., 2023, pp. 1447-1460.

T.B. Trung, L. Chang, N. T. Long, K. Yao, and H. T. T. Binh, “Verification-
free approaches to efficient locally densest subgraph discovery,” in Proc.
IEEE Int. Conf. Data Eng., 2023, pp. 1-13.

A. Miyauchi, T. Chen, K. Sotiropoulos, and C. E. Tsourakakis, “Densest
diverse subgraphs: How to plan a successful cocktail party with diversity,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2023,
pp. 1710-1721.

G. F. Italiano, Y. Manoussakis, K. T. Nguyen, and H. P. Pham, “Maximum
colorful cycles in vertex-colored graphs,” in Proc. Int. Comput. Sci. Symp.
Russia, 2018, pp. 106-117.

R. Dondi and M. M. Hosseinzadeh, “Finding colorful paths in temporal
graphs,” in Proc. Int. Conf. Complex Netw. Appl., 2021, pp. 553-565.

A. Gyarfas and G. N. Sarkozy, “Induced colorful trees and paths in
large chromatic graphs,” Electron. J. Comb., vol. 23, no. 4, 2016,
Art. no. P4.46. [Online]. Available: www.combinatorics.org/ojs/index.
php/eljc/article/view/v23i4p46

Y. Manoussakis and H. P. Pham, “Maximum colorful independent
sets in vertex-colored graphs,” Electron. Notes Discret. Math., vol. 68,
pp. 251-256, 2018.

D. P. Rubert, E. Araujo, and M. A. Stefanes, “SIMBio: Searching and
inferring colorful motifs in biological networks,” in Proc. IEEE Int. Conf.
Bioinf. Bioeng., 2015, pp. 1-6.

D. P. Rubert, E. Araujo, M. A. Stefanes, J. Stoye, and F. V. Martinez,
“Searching and inferring colorful topological motifs in vertex-colored
graphs,” J. Comb. Optim., vol. 40, no. 2, pp. 379-411, 2020.

G. F. Italiano, Y. Manoussakis, K. T. Nguyen, and H. P. Pham, “Max-
imum colorful cliques in vertex-colored graphs,” in Proc. Int. Comput.
Combinatorics Conf., 2018, pp. 480-491.

M. S. Tahaei and S. N. Hashemi, “Graph characterization by counting sink
star subgraphs,” J. Math. Imag. Vis., vol. 57, no. 3, pp. 439-454, 2017.
X. Yu, I. Zadik, and P. Zhang, “Counting stars is constant-degree optimal
for detecting any planted subgraph: Extended abstract,” in Proc. Conf.
Learn. Theory, 2024, pp. 5163-5165.

M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and
A. Yodpinyanee, “Sublinear-time algorithms for counting star subgraphs
via edge sampling,” Algorithmica, vol. 80, no. 2, pp. 668—697, 2018.

I. Finocchi, R. L. Garcia, and B. Sinaimeri, “From stars to diamonds:
Counting and listing almost complete subgraphs in large networks,” Com-
put. J., vol. 67, no. 6, pp. 2151-2161, 2024.

Hongchao Qin received the BS degree in mathemat-
ics, and the ME and PhD degrees in computer science
from Northeastern University, China, in 2013, 2015
and 2020, respectively. He is currently an assistant
professor with the Beijing Institute of Technology,
China. His current research interests include social
network analysis and data-driven graph mining.

Gao Sen received the BSc and MSc degrees in
computer science and technology from the School
of Computer Science and Technology, Beijing In-
stitute of Technology, Beijing, China, in 2019 and
2022, respectively. Currently, he is working toward
the PhD degree in computer science with the School
of Computing, National University of Singapore. His
research interests include distributed graph system,
graph data management and graph privacy preserv-
ing.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

www.mdpi.com/about/announcements/784
www.combinatorics.org/ojs/index.php/eljc/article/view/v23i4p46
www.combinatorics.org/ojs/index.php/eljc/article/view/v23i4p46

QIN et al.: COLORFUL STAR MOTIF COUNTING: CONCEPTS, ALGORITHMS AND APPLICATIONS

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is
currently a professor with the Beijing Institute of
Technology, Beijing, China. His research interests
include graph data management and mining, social
network analysis, graph computation systems, and
graph-based machine learning.

Hongzhi Chen received the PhD degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, in 2020. He
is currently a senior RD with ByteDance Infrastruc-
ture Team, Beijing, China, working on graph related
storage, processing and training systems. His research
interests cover the broad area of distributed systems
and databases, with special emphasis on graph sys-
tems and machine learning/deep learning systems.

1125

Ye Yuan received the BS, MS, and PhD degrees
in computer science from Northeastern University,
in 2004, 2007, and 2011, respectively. He is now a
professor with the Department of Computer Science,
Northeastern University, China. His research interests
include graph databases, probabilistic databases, and
social network analysis.

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Science,
Northeastern University, China, in 1988, 1991 and
1996, respectively. Currently, he is a professor with
the Department of Computer Science, Beijing In-
stitute of Technology, Beijing, China. His research
interests include XML data management, query pro-
cessing and optimization, bioinformatics, high di-
mensional indexing, parallel database systems, and
cloud data management. He has published more than
100 research papers.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2025 at 09:32:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

